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Abstract: State estimation technique plays a vital role in predicting the stability of the power system and is done by estimating
the primary variables (states) of the system. Voltage magnitudes (V) and angles (δ) at network buses define the state of a power
system. Supervisory control and data acquisition is used to monitor and control the power system state variables where in
accurate state variable estimation is quite complex due to the presence of noise in the measured data. State estimation (SE)
using conventional techniques such as weighted least square, regularised least square, Kalman filter predict the state vectors
with still random error due to its parametric limitations. This study proposes hybrid Kalman filter based SE where the limitation in
efficient handling of more number of variables using Kalman filter is addressed by regularising the state variables with
constrains and the results are validated for 62-bus Indian utility system. The simulation results explain the operational efficiency
of the hybrid Kalman filtering method under various load variation conditions and the results are compared with SE using
conventional Kalman filtering method.

1 Introduction
In power system, the problems are encountered in monitoring and
controlling the transmission system due to its complexity and its
dynamic nature. These problems come primarily from the nature of
the measurement devices (errors in the meter readings) and from
communication problems in transmitting the measured values to
the control centre. Usually, this process is done by the supervisory
control and data acquisition (SCADA) and phasor measurement
unit (PMU). Transmitting the data to the control centre through
SCADA is not always reliable though it is considered as the
simplest method and it is quite expensive while considering the
later technique. The primary variables by which the entire state of
the system can be defined are voltage magnitudes and phase angles
at the system nodes. State estimation (SE) is the process of
assigning a value to an unknown system state variable based on
measurements from that actual system according to some criteria
[1]. The inputs to an estimator are the imperfect power system
measurements of voltage magnitudes, real power, reactive power,
real power flow and the reactive power flow. The estimator is
designed to produce the best estimate of the system voltage and
phase angles [2].

State estimators can be static or dynamic [3] in nature. The
static state estimator processes measured data that are considered to
be time invariant and the estimated states are redundant in nature
[4]. Dynamic state estimators estimate the current system states
and also forecast the states of next sample duration. Dynamic SE
offers reliable state prediction of power system since continuous
monitoring of system states at the proper intervals is made [5]. The
conventional method used for static SE is weighted least square
(WLS) which aims to minimise the squares of the errors present in
the measured data [6]. Recently, the SE is done using Kalman
filtering [7] technique which gives efficient results with larger
system. There is a limitation in KF that we have to express the
measured values as a linear function of state wherein our system is
highly non-linear. The extended Kalman filter (EKF) [8] is used
where linearisation of the states can be made [9]. If the number of
variables in the system increases, the EKF fails to converge at
optimal solution. This paper presents an hybrid Kalman filtering
technique where the regularisation of the state variables is done to
converge at optimal state.

This paper is organised in eight sections. The introduction
provides the importance of state estimation in the power system
operation and control with its different estimation technique. The
second section describes about the mathematical modeling of the
network, the third and fourth sections deal with the methodology of
RLS and Kalman filtering with its basic equations. The fifth and
sixth section present the Hybrid Kalman Filter methodology and
the 62 bus test system. The last two sections present result analysis
and conclusion of 62 bus utility system using HKF.

2 Network modelling
Power system SE requires implicitly the network topology. The
two port π network [9, 10] is used to represent the transmission
lines. The series impedance (Z) and the line charging susceptance
(Y) are considered in the network by obtaining Ybus. It can be
calculated by node equation at each node or by direct inspection
methods [10]. The relation between the node parameters and the
Ybus is represented by

I = YbusV (1)

The real and reactive power injections in the bus are given in the
following equations:

Pi = Vi ∑
j = 1

Nbus

V j (Gi jcos θi j + Bi jsin θi j) (2)

Qi = Vi ∑
j = 1

Nbus

V j (Gi jcos θi j − Bi jsin θi j) (3)

The mismatch vector is determined by (4) and (5). The voltage and
angles considering the first order of Taylor expansion are given in
(6)

ΔPi = Psp . i − Pi = 0 (4)

ΔQi = Qsp . i − Qi = 0 (5)
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ΔP
ΔQ =

A = ∂P
∂θ B = ∂P

∂V

C = ∂Q
∂θ D = ∂Q

∂V

Δθ
ΔV (6)

The ΔP and ΔQ are mismatch vectors and found using
conventional Newton Rapson analysis [11] and if they are not
converged, the Jacobian matrix is estimated. The states voltages
and angles are updated using the estimated correction vectors Δθ
and ΔV.

3 Weighted least squares method
WLS estimation technique aims to reduce the weighted sum of the
squares of the measured state vectors [12]. The accuracy of the
technique relies on the weights and the accurate states are
estimated by proper selection of weight [13]. The measured data
available are power injections, power flows and voltage
magnitudes. The above measurements are not noise free. The errors
may be measurements noises, wrong information of the circuit and
bad data [10, 14]. The vector m gives the set of measurements and
it is given in the following equation:

m = f x + r (7)

where m represents the measurement and x represents the state
vector containing the true state, respectively, f(x) is a non-linear
vector which relates the measurements to the states and r
represents the error in the measurement. The voltage measurements
and angles define the state vector

x = [δ1, δ2, . . . , δN, V1, V2, . . . , VN] (8)

where δ1, δ2,…, δN are voltage angles and the voltage magnitudes
of the buses are V1, V2,...,VN, and the maximum number of buses is
denoted by N. r is the error vector which considered to be
independent covariance and Gaussian with mean zero. The weights
[15] are given by

C =

σ1
2 0 0 0

0 σ2
2 0 0

0 0 … 0
0 0 0 σm

2

(9)

To attain the best estimate, the prime fact is that WLS technique
minimises the measurement deviation squares from the initial
estimate. Therefore, the objective function is given by modified
equations

O(x) = ∑
i = 1

n mi − f i(x)2

Ci j
(10)

O(x) = m − f (x) TC−1 m − f (x) (11)

where C indicates the covariance error matrix of the measurement
and Cij is the jth column and ith row of the matrix. The optimality
of the first order is the condition to be satisfied from which the
solution for (12) can be obtained. The optimality condition is given
as

p(x) = ∂O(X)
∂x = − FT(x)C−1(m − f (x)) = 0 (12)

Newton iterative procedure is applied to solve the above non-linear
equation

xk + 1 = xk − G(xk) −1 ∗ p(xk) (13)

G(x) represents the gain and for every iteration it is decomposed
into its factors and (14) is solved by forward/backward substitution

method. The values of the states are updated with successive
iterations until the condition is satisfied as shown in (15)

[G(xk)]Δxk + 1 = FT(xk)C−1(m − f (xk)] (14)

where

∇xk + 1 = xk + 1 − xk (15)

The network elements, parameters and network topology
information should be sufficient so that the accurate estimation can
be done.

3.1 Regularised least squares method

On the increase in the number of variables in the linear system,
conventional WLS has some limitations that are, even in the case
where the number of the variables and observations mismatches,
RLS improves the efficiency of the model by modifying it at
training time [6].

Let the measurement vector given in (7) WLS estimate be
considered, by minimising the O(x) in (12) where the weight is

W = C−1 (16)

The state estimate x∧ can be obtained only if the condition of system
observability is ensured with enough measurement data such as the
location, type and number of measurement. The covariance matrix
C is considered. Likewise, let the system measurement, in which
the states (V, δ) exist in all the nodes be considered. The measured
values are denoted by u and it indicates that the network is
observable. The new matrix, isolating the measured value of
voltages (real or pseudo) from the remaining measured values, is
given by

m = m
u

, f (x^) = f (x^)
x^

, W̄ = W 0
0 D

and Δm = m − f (x∧)
u − x

(17)

where D represents the diagonal matrix of the weights to its
corresponding measured voltages and its values are measurement
variance inverse. The Gauss-Newton equation [6] to solve the
above is given as

(FW̄F)Δx^k = F′W̄Δm(x^) (18)

x^k + 1 = x^k + Δxk (19)

4 Kalman filter (KF) estimator
Kalman filtering otherwise known as linear quadratic estimation is
an optimal state estimator which estimates the state x∧ considering
the measurements that are taken over time, and consists of noise
and random inaccuracies [8, 16]. It estimates the optimum state by
considering the probability distribution function of both the
measurement and the estimated state x∧.

This recursive algorithm operates with two-stage processes [17]
that are prediction and updation. In prediction stage, it calculates
the estimates of the present state variable xk

∧  and with the next
measurement (k + 1), the predicted estimates are updated using the
weights which is the Kalman gain. The KF can be modelled
mathematically as follows:

xk + 1 = Axk + Buk + wk (20)

where xk + 1 and xk are variables of the system at time instants k + 1
and k, respectively. uk represents the control variable. The matrices
A and B link the state variables of the system at time k to time k + 
1.
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A simplified linearised model is used to find the solutions. This
algorithm starts from general measurement model given by (21)
similar to (7)

z = h(x) + r (21)

The following assumptions are made, the errors are independent,
i.e. weakly correlated errors have zero mean and the initial
predicted estimate Xp and its corresponding covariance Pp as

E[riir j],] = 0, i ≠ j
E[ri] = 0

Xp = Δx, Pp = I

The predicted error, KFs gain and Δx are calculated by

r = Δz − H ⋅ Xp (22)

K = P0HT[H ⋅ Pp ⋅ HT + R]−1 (23)

Δx = K(Δz − h(x)) (24)

The updated values can be obtained by

Xc = Xp + (K ⋅ r) (25)

Pc = [I − K ⋅ H]Pp (26)

This process is repeated with the updated values till the
convergence is achieved.

5 HKF estimator

HKF has its significant operation in the system where number of
measurements are insufficient and it inculcates the efficiency of
system observability for accurate SE. 

The voltage and phase angle measurement functions are
considered separately while calculating the residue as of RLS
method as given in (17) (Fig. 1)

m = m
u

, f (x^) = f (x^)
x^

,

W̄ = W 0
0 D

and Δm = m − f (x∧)
u − x

where D is the diagonal weighting matrix indicating the voltage
measurements and its values are measurement variance inverse.
The above conditions are solved with Gauss-Newton equation and
the updated states are calculated where the uncertainties due to
unobservability are reduced. The assumptions made are that errors
have zero mean and the initial predicted estimate Xp and its
corresponding covariance Pp as ΔX and I. The predicted error, KF
gain are calculated by

r = z − m (27)

K = P0NT[N ⋅ Pp ⋅ NT + R]−1 (28)

where z indicates the vector measurements and m represents the
true value

m = h; u
h = h2; h3; h4; h5
N = H; A

Fig. 1  Flowchart of HKF algorithm
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The updated states are calculated using the obtained residue and
the Kalman gain. The process is repeated with updated values till
the convergence is attained.

6 62-bus Indian utility system
The 62-bus system is taken to prove the efficiency of the

algorithm. The single line diagram is shown in Fig. 2.
The 62-bus system data are:

• Number of buses – 62
• Number of transmission lines – 89
• Number of generators – 19
• Number of transformers – 11
• Number of loads – 33

In the present study, the dynamics are considered by having
different load variations. From [18], the laudability of the system
can vary from 65 to 85% of the full load condition and the
variation may be equal or unequal. The three cases considered are

Case 1: Base case (100% loading).
Case 2: Equal variation of loads (75% of loading).
Case 3: Unequal variation of loads (65 and 85% of loading).

The generators are modelled as voltage controls and the line data
and the transformer tap setting value are also included in the
simulation [19]. The load variations are considered in the bus
which has maximum load demand. From the full load value of the
system, 65, 75 and 85% loading are calculated.

The SE is done by both Kalman filtering and hybrid Kalman
filtering. The reduction in noise, while predicting the states
(voltage and angle) with HKF is given in Fig. 3. The estimated bus
voltages are compared with the maximum demand load bus of the
62-bus Indian utility system.

7 Result and discussion
To check the efficiency of convergence of the hybrid Kalman value
towards the true value, the maximum loaded buses are considered.
The 13 buses 8, 11, 12, 13, 15, 18, 19, 26, 34, 35, 38, 44 and 53 are
loaded with a real power demand of more than 100 MW. The load
value of the maximum loadad buses is given in Table 1.

Maximium loaded buses are considered since they contribute
more load and any small change can affect the entire system in
terms of stability and control. Let us consider the bus 53, it
contributes about 9% of the total load and any disturbance in that
will reflect on the entire system.

The comparison is done for the estimated bus voltages using the
KF and the HKF. The result in Table 2 shows the estimated value
of bus voltages which indicates that the estimates using HKF are
close to the true value where the errors are minimised when
compared with the conventional KF. With this estimated voltages,
the remaining operating parameters can be calculated using
mathematical formula. 

Fig. 2  62-bus Indian utility system
 

Fig. 3  Comparison of estimated bus voltages for 85% of loading with
unequal variation in demand

 

Table 1 Maximum loaded buses
Bus number Active load, MW Bus number Active load, MW
8 109 26 116
11 161 34 100
12 155 35 107
13 132 38 166
15 155 44 109
18 121 53 248
19 130
 

J. Eng., 2019, Vol. 2019 Iss. 5, pp. 3442-3447
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

3445



Figs. 4–6 show the estimated bus voltages of the maximum
loaded bus using KF and HKF methods. The comparison between
Figs. 4–6 shows that even for unequal variation in demand, the
HKF minimises the error in the measured signal. Fig. 4 shows that
HKF gives the exact true state if the load variation is small. For
65% loading with unequal variation of load, the estimated state
using HKF merges with the true value for most of the buses. The
mismatch occurs only in bus 11 and bus 12. 

Fig. 5 shows that for equal variation of load (i.e. same value of
MW is changed at all maximum loadad buses) the estimated state
has a common difference in states between the HKF estimated
states and true states for most of the buses and the values are close
to the true value than the conventional Kalman filtering method.

The comparison of unequal variation of load is given in Fig. 6
which shows that there is no common difference in states between
true value and the HKF value. The estimated states are close to the

true value for the buses where there is a small load variation than
the buses with more load variations. The figure shows that for
buses 15, 18 and 19 the values are very close to the true value
where the HKF plot merges with the true plot.

Further, the computational significance and efficiency of the
hybrid filter are validated by considering the error of the estimated
parameter by various methods. To do so, mean absolute percentage
error (MAPE) is used, which indicates the percentage of noise
present in the filter reading. Table 3 shows the reduction in the
MAPE in HKF for all the load variation. 

8 Conclusion
This paper has explained the process of SE using Kalman and
hybrid Kalman filtering technique. This HKF has the property of
regularising the non-linear system to linear system. The increase in
the number of iteration shows the accuracy of the estimated state.
A comparative study has been made between the KF technique and
the HKF technique under various load conditions on the maximum
loaded 62-bus Indian utility grid system. The state variable
considered for comparison is bus voltages and the results show that
the HKF estimate the states which are near to the true value,
thereby minimising the effects due to uncertain measurement error.
The MAPE proves the efficiency of the HKF even at the unequal
load demand.

Table 2 Estimated bus voltages
Bus 65% of unequal variation 75% of equal variation 85% of unequal variation

TRUE KF HKF TRUE KF HKF TRUE KF HKF
8 1.048 1.045 1.050 1.047 1.036 1.041 1.048 1.047 1.052
11 0.979 0.970 0.976 0.978 0.964 0.970 1.006 0.987 0.993
12 0.964 0.955 0.961 0.970 0.957 0.963 0.993 0.976 0.983
13 1.006 1.001 1.006 1.017 1.004 1.010 1.033 1.019 1.025
15 1.072 1.065 1.070 1.070 1.057 1.063 1.070 1.065 1.070
18 1.035 1.030 1.035 1.034 1.021 1.026 1.033 1.027 1.032
19 1.073 1.067 1.072 1.067 1.053 1.058 1.064 1.058 1.064
26 1.027 1.018 1.023 1.025 1.009 1.015 1.021 1.003 1.008
34 1.060 1.054 1.059 1.060 1.050 1.055 1.060 1.048 1.053
35 1.050 1.045 1.049 1.050 1.040 1.045 1.041 1.029 1.034
38 1.042 1.037 1.042 1.041 1.031 1.036 0.990 0.972 0.978
44 0.986 0.977 0.982 0.991 0.976 0.982 1.020 1.004 1.010
53 1.024 1.017 1.023 1.019 1.007 1.013 1.048 1.047 1.052

 

Fig. 4  Comparison of estimated bus voltages for 65% of loading with
unequal variation in demand

 

Fig. 5  Comparison of estimated bus voltages for 75% of loading with
equal variation in demand

 

Fig. 6  Comparison of MAPE in KF and HKF
 

Table 3 Comparison of MAPE in KF and HKF
Filter 65% of

unequal
variation

75% of equal
variation

85% of
unequal
variation

Kalman (KF) 0.666 1.273 1.106
hybrid Kalman
(HKF)

0.143 0.731 0.598
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The estimated states are used to calculate the various operating
parameters such as real, reactive power, line losess and flows with
mathematical formulas. The operating parameters are within the
specified limit for all the buses then the system is in stable
operating condition. If the value violates the limit then the system
is in critical states and the necessary control action will be taken to
make the system stable. Thus HKF can be implemented for
estimating the true state vector for better operation of the system.
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