\square

Question Paper Code : 31127

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.
 Fifth Semester
 Computer Science and Engineering 080230017 - DISCRETE MATHEMATICS

(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20 \mathrm{marks})$

1. Write the statement. "The sun is bright and the humidity is not high" in symbolic form.
2. Given that the value of $p \rightarrow q$ is true, can you determine the value of $\sim p \vee(p \leftrightarrow q)$?
3. Use quantifier to express the statement $\sqrt{5}$ is not rational.
4. Negate the proposition $\forall x P(x) \wedge \exists y q(y)$.
5. Show that for any two sets A and $B, A-(A \cap B)=A-B$.
6. Determine whether $(p(S), \subseteq)$ is a lattice where ' S ' is a set.
7. If $f: A \rightarrow B$, where $A=\{1,2,3,4\}$ and $\mathrm{B}=\{a, b, c, d\}$ is defined by $f=\{(1, a)$, $(2, a)(3, c),(4, d)\}$ Show that f is a function, but f^{-1} is not.
8. If A is a subset of a universal set U, prove that $\psi_{A}(x)=0$ if and only if $A=\phi$.
9. Define an algebraic system.
10. Define normal subgroup.

PART B $-(5 \times 16=80$ marks $)$
11. (a) Prove that $A \vee(\overline{B \wedge C}) \doteq(A \vee \bar{B}) \vee \bar{C}$ is a tautology.

Or

(b) Consider the following argument and determine whether it is valid "Either I will get good marks or I will not graduate. If I did not graduate I will go to Canada. I get good marks. Thus, I would not go to Canada".
12. (a) (i) Prove that $(\exists x)(P(x) \wedge Q(x)) \Rightarrow(\exists x) P(x) \wedge(\exists x) Q(x)$.
(ii) Show that $(\exists z)(Q(z) \wedge R(z))$ is not implied by the formulas and $(\exists x)(P(x) \wedge Q(x))$ and $(\exists y)(P(y) \wedge R(y))$ by assuming a universe of discourse which has two elements.

Or
(b) (i) Using indirect method show that $S \rightarrow\rceil Q, S \vee R\rceil$,$R ,$ $\neg R \rightleftharpoons Q \Rightarrow 7 P$.
(ii) Show that the hypothesis "If you send me an e-mail message then I will finish writing the program", "If you do not send me an e-mail message then I will go to sleep early", and "If I go to sleep early, then I will wake up feeling refreshed" leads to the conclusion "If I do not finish writing the program then I will make up feeling refreshed",
13. (a) (i) If A, B and C are sets, prove algebraically that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
(ii) If any Boolean algebra, prove that $a \cdot b^{\prime}+a^{\prime} \cdot b=(a+b) \cdot\left(a^{\prime}+b^{\prime}\right)$.

Or
(b) (i) Let Z be the set of integers and let R be the relation called "congruence modulo 3 " defined by $R=\{(x, y) /(x-y)\}$ is divisible by 3 . Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z.
(ii) Find all the sub lattices of the lattice $\left\{S_{n}, D\right\}$ for $n=12$ where the relation is given by $D=\{(a, b) / a$ divides $b\}$.
14. (a) (i) Let $\dot{A}=\{1,2,3\}$ and f, g, h and s be function from A to A given by
$f=\{(1,2)(2,3)(3,1)\} ; g=\{(1,2)(2,1)(3,3)\}$
$h=\{(1,1)(2,2)(3,1)\} ; s=\{(1,1)(2,2)(3,3)\}$.
Find $f \circ g, g \circ f, f \circ h \circ g, g \circ s, s \circ s, f \circ s$.
(ii) Show that the function $f(x, y)=x+y$ is primitive recursive function. Hence compute the value of $f(2,3)$.
(b) (i) Let f, g be $f: N \rightarrow N$ defined by $f(n)=n+1, g(n)=2 n$. Find $f \circ f, f \circ g, g \circ f, f \circ g$.
(ii) Let $\mathrm{A}=\{1,2,3\}$.
(1) List all the permutations from A to A
(2) Find square all the permutation
(3) Find inverse all the permutations
(4) Prove that product of permutation is again a permutations. (8)
15. (a) State and prove Lagrange's theorem.

> Or
(b) Find the code words generated by the parity check matrix $H=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
when the encoding function is $e: B^{3} \rightarrow B^{6}$.

