Reg. No. :

Question Paper Code : 31127

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fifth Semester

Computer Science and Engineering

080230017 — DISCRETE MATHEMATICS

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the statement. "The sun is bright and the humidity is not high" in symbolic form.
- 2. Given that the value of $p \to q$ is true, can you determine the value of $\sim p \lor (p \leftrightarrow q)$?
- 3. Use quantifier to express the statement $\sqrt{5}$ is not rational.
- 4. Negate the proposition $\forall x P(x) \land \exists y q(y)$.
- 5. Show that for any two sets A and B, $A (A \cap B) = A B$.
- 6. Determine whether $(p(S), \subseteq)$ is a lattice where 'S' is a set.
- 7. If f: A → B, where A = {1, 2, 3, 4} and B = {a, b, c, d} is defined by f = {(1, a), (2, a) (3, c), (4, d)} Show that f is a function, but f⁻¹ is not.
- 8. If A is a subset of a universal set U, prove that $\psi_A(x) = 0$ if and only if $A = \phi$.
- 9. Define an algebraic system.
- 10. Define normal subgroup.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Prove that
$$A \vee (\overline{B \wedge C}) = (A \vee \overline{B}) \vee \overline{C}$$
 is a tautology.

Or

(b) Consider the following argument and determine whether it is valid – "Either I will get good marks or I will not graduate. If I did not graduate I will go to Canada. I get good marks. Thus, I would not go to Canada".

12. (a) (i) Prove that
$$(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$$
.

(ii) Show that $(\exists z)(Q(z) \land R(z))$ is not implied by the formulas and $(\exists x)(P(x) \land Q(x))$ and $(\exists y)(P(y) \land R(y))$ by assuming a universe of discourse which has two elements.

Or

- (b) (i) Using indirect method show that $S \to \neg Q, S \lor R, \neg R$, $\neg R \rightleftharpoons Q \Rightarrow \neg P$.
 - (ii) Show that the hypothesis "If you send me an e-mail message then I will finish writing the program", "If you do not send me an e-mail message then I will go to sleep early", and "If I go to sleep early, then I will wake up feeling refreshed" leads to the conclusion "If I do not finish writing the program then I will make up feeling refreshed".

13. (a) (i) If
$$A, B$$
 and C are sets, prove algebraically that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. (8)

(ii) If any Boolean algebra, prove that $a \cdot b' + a' \cdot b = (a+b) \cdot (a'+b')$. (8)

Or

- (b) (i) Let Z be the set of integers and let R be the relation called "congruence modulo 3" defined by $R = \{(x, y)/(x y)\}$ is divisible by 3}. Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z. (8)
 - (ii) Find all the sub lattices of the lattice $\{S_n, D\}$ for n = 12 where the relation is given by $D = \{(a, b)/a \text{ divides } b\}$. (8)

(i) Let A = {1, 2, 3} and f,g,h and s be function from A to A given by f = {(1,2) (2,3)(3,1)}; g = {(1,2) (2,1) (3,3)} h = {(1,1) (2,2) (3,1)}; s = {(1,1) (2,2) (3,3)}.
Find f ∘ g, g ∘ f, f ∘ h ∘ g, g ∘ s, s ∘ s, f ∘ s.

(ii) Show that the function f(x, y) = x + y is primitive recursive function. Hence compute the value of f(2, 3). (8)

Or

- (b) (i) Let f,g be $f: N \to N$ defined by f(n) = n+1, g(n) = 2n. Find $f \circ f, f \circ g, g \circ f, f \circ g$. (8)
 - (ii) Let $A = \{1, 2, 3\}$.
 - (1) List all the permutations from A to A
 - (2) Find square all the permutation
 - (3) Find inverse all the permutations
 - (4) Prove that product of permutation is again a permutations. (8)
- 15. (a) State and prove Lagrange's theorem.

Or

		1	1	1	
		1	0.	1	
(b)	Find the code words generated by the parity check matrix $H =$	0	1	1	1
		1	0	0	
		0	1	0	
		0	0	1	
	when the encoding function is $e: B^3 \to B^6$.	,		(16))

(16)