ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011

REGULATIONS : 2008

FIFTH SEMESTER: CSE

080230017 - DISCRETE MATHEMATICS

Time: 3 Hours

PART - A
ANSWER ALL QUESTIONS

```
Construct the truth table for }(p\veeq)->(p\wedgeq
Show that the statement }q\vee(p\vee\squareq)\vee(\squarep\wedgeq) is a tautology
Symbolise the statement "All men are giants"
Define quantifiers
If }\textrm{A}\mathrm{ and }\textrm{B}\mathrm{ are finite sets show that n(A}\mathcal{Q
Show that in any Boolean Algebra }(a+b)(\mp@subsup{a}{}{\prime}+c)=ac+\mp@subsup{a}{}{\prime}+b
Define a characteristic function of a set
8. State whether the function f(x)=5\mp@subsup{x}{}{2}+7\mathrm{ is injection, surjection or bijection on R,} the set of real numbers.
9. Define a normal subgroup of a group.
10. If the minimum distance between two code words is 7 , then find how many errors can be detected and how many errors can be corrected?
```


PART - B

ANSWER ALL QUESTIONS

(OR)

11b) (i) Construct the truth table for $((p \vee q) \wedge((p \rightarrow r) \wedge(q \rightarrow r))) \rightarrow r$
(ii) Using direct method prove $(p \rightarrow q) \rightarrow r, p \wedge s, q \wedge t \Rightarrow r$

12a) (i) Prove that $(\exists x)(P(x) \wedge S(x)),(\forall x)(P(x) \rightarrow R(x)) \Rightarrow(\exists x)(R(x) \wedge S(x))$
(ii) By indirect method, prove that $(\forall x)(P(x) \vee Q(x)) \Rightarrow(\forall x)(P(x) \vee(\exists x) Q(x)$.

(OR)

12b) (i) Prove that $(\exists x) M(x)$ follows logically from the premises $(\forall x)(H(x) \rightarrow M(x))$ and $(\exists x) H(x)$
(ii) Prove the following implication

$$
\forall x(P(x) \rightarrow Q(x) \wedge \forall x(Q(x) \rightarrow R(x) \Rightarrow \forall x(P(x) \rightarrow R(x)
$$

13a) (i) If R is the relation on the set of positive integers such that ($a, b) \in R$ if and only if $a^{2}+a$ is even, prove that R is an equivalence relation.
(ii) If $\{\mathrm{L}, \leq\}$ is a Lattice, then for any $a, b, c \in L$ prove that $a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$

(OR)

13b) (i) Define the relation P on $\{1,2,3,4\}$ by $P=\{(a, b) / a-b=1\}$. Determine the adjacency matrix of p^{2}
(ii) Simplify the Boolean expression $\left(\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{3}\right)\right) x_{1} \overline{x_{2}}$

14a) (i) Let $f: R \rightarrow R$ and $g: R \rightarrow R$ where R is the set of real numbers, find $f \bullet g$ and

$$
g \cdot f \text {, if } f(x)=x^{2}-2 \text { and } g(x)=x+4
$$

(ii) Show that the function $f(x, y)=x^{y}$ is a primitive recursive function.
(OR)

11a) (i) Find pdnf of $P \vee(P \rightarrow(Q \vee(\square \rightarrow R)))$ without using truth table.
(ii) Use the indirert method to show that $r \rightarrow 7 q, r \vee s, s \rightarrow 7 q, p \rightarrow q \Rightarrow 7 p$

14b) (i) Show that $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection
(ii) Using characteristic function show that $\overline{(A \cup B)}=\bar{A} \cap \bar{B}$

15a) (i) If H is a subgroup of g such that $x^{2} \in H$ for every $x \in G$ prove that H is a normal subgroup of G
(ii) Find the minimum distance of the encoding function $e=B^{2} \rightarrow B^{4}$ given by $e(00)=0000, e(10)=0110, e(01)=1011, e(11)=1100$
(OR)
15b) (i) If (G, \star) is an abelian group then for $a l l a, b \in G$, show that if $(a \star b)^{n}=a^{n} \star b^{n}$.
(ii) Prove that a code can correct all combinations of k or fewer errors if and only if the minimum distance between any two code word is atleast $2 k+1$

