Reg. No. : \square

Question Paper Code : 41143

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester
Computer Science and Engineering
080230017 - DISCRETE MATHEMATICS

(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. State any one of the valid argument forms.
2. Construct the truth table for $\sim(p \wedge q)$.
3. Use quantifier to express the statement $\sqrt{5}$ is not rational.
4. Negate the proposition $\forall x P(x) \wedge \exists y q(y)$.
5. Draw the Hasse diagram for the set of all divisors of 12.
6. If $R=\{(1,1),(1,2),(1,3),(2,1),(3,1),(3,2),(2,3)\}$ is a relation on the set of positive integers, find its inverse.
7. Give an example of a recursive function.
8. If $A=\{a, b\}$ determine all the permutations of A.
9. Define Hamming distance between two n-tuples.
10. Give an example of a semi group and a monoid.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) Prove that $A \vee(\overline{B \wedge C)}=(A \vee \bar{B}) \vee \bar{C}$ is a tautology.
Or
(b) Consider the following argument and determine whether it is valid "Either I will get good marks or I will not graduate. If I did not graduate I will go to Canada. I get good marks. Thus, I would not go to Canada".
12. (a) Show that $(x)(P(x) \vee Q(x)) \Rightarrow(x) P(x) \vee(\exists x) Q(x)$.
Or
(b) Explain the rules of (i) universal specification (ii) Existential specification (iii) Existential generalization (iv) universal generalization with examples.
13. (a) Draw the Hasse diagram for
(i) $D_{30}=$ the set of all divisors of 30
(ii) $P(A)=$ the set of all subsets of $A=\{a, b, c\}$. Establish a one-to-one onto homomorphism between D_{30} and $P(A)$ and hence prove that D_{30} is a Boolean Algebra.
Or
(b) Find, with justification whether the following lattices are (i) distributive (ii) complemented (iii) both.

14. (a) Show that
(i) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(ii) $(A \cup B)^{c}=\left(A^{c} \cap B^{c}\right)$ using characteristic functions.

Or

(b) (i) Consider $A=B=C=R$ and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by $f(x)=x+9, g(y)=y^{2}+3$. Find $f \circ f, g \circ g, f \circ g, g \circ f$.
(ii) For the following two permutations :

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 6 & 3 & 1 & 2
\end{array}\right), g=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 4 & 2 & 1 & 3
\end{array}\right)
$$

Find the product $f \circ g$ and express f as a product of cycles and then as a product of transpositions.
15. (a) Consider the $(3,8)$ encoding function : $e: B^{3} \rightarrow B^{8}$ defined by the code words

$$
\begin{aligned}
& e(000)=00000000 \\
& e(001)=10111000 \\
& e(010)=00101101 \\
& e(011)=10010101 \\
& e(100)=10100100 \\
& e(101)=10001001 \\
& e(110)=00011100 \\
& e(111)=00110001
\end{aligned}
$$

How many errors will e detect?

Or

(b) (i) Let $\left(S,{ }^{*}\right)$ and ($S,{ }^{* \prime}$) be monoids with identities e and e^{\prime} respectively. Let $f: S \rightarrow T$ be an isomorphism. Then prove that $f(e)=e^{\prime}$
(ii) Let $S=\{1,2,3,6,12\}$. The operation * in S is defined as $a^{*} b=\operatorname{gcd}(a, b)$. Find whether S is a monoid and if so find the identity element.

