Question Paper Code : 91585

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester

Computer Science and Engineering

MA 2265/MA 52/10144 CS 501 — DISCRETE MATHEMATICS

(Common to B.Tech. Information Technology)

(Regulation 2008/2010)

(Common to PTMA 2265/10144 CS 501 — Discrete Mathematics for B.E. (Part –Time) Third Semester — Computer Science and Engineering — Regulation 2009/2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Show that $(p \rightarrow r) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent.

- 2. Find a counter example, if possible, to these universally quantified statements, whose the universe of discourse for all variables consists of all integers.
 - (a) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$.
 - (b) $\forall x \,\forall y \,(xy \geq x)$.
- 3. How many permutations of $\{a, b, c, d, e, f, g\}$ and with a?
- 4. In how many ways can a $2 \times n$ rectangular board be tiled using 1×2 and 2×2 pieces?
- 5. Define isomorphism of directed graphs.
- 6. What do you strongly connected components of a telephone call graph represent?
- 7. Give an example for homomorphism.
- 8. Define semigroups and Monoids.

- 9. What values of the Boolean variables x and y satisfy xy = x + y?
- 10. Define a Lattice. Give suitable example.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Establish this logical equivalences, where A is a proposition not involving any quantifiers. Show that $(\forall x p(x)) \land A \equiv \forall x (p(x) \land A)$ and $(\exists x p(x)) \land A \equiv \exists x (p(x) \land A)$. (8)
 - (ii) Show that $\exists x p(x) \land \exists x Q(x)$ and $\exists x (p(x) \land Q(x))$ are not logically equivalent. (8)

Or.

- (b) (i) Use quantifiers and predicates to express the fact that $\lim_{x \to a} f(x)$ does not exist. (8)
 - (ii) Show that $\forall x p(x) \land \exists x Q(x)$ is equivalent to $\forall x \exists y (p(x) \land Q(y))$. (8)

12.

(a)

(i) Show that if *n* and *k* are positive integers then $\binom{n+1}{k} = (n+1)\binom{n}{k-1}/k$. Use this identity to construct an inductive definition of the binomial co – efficients. (8)

(ii) Solve the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with $a_0 = 5, a_1 = -9$, and $a_2 = 15$. (8)

Or

- (b) (i) Use the principle of inclusion exclusion to derive a formula for $\phi(n)$ when the prime factorization of n is $n = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$. (8)
 - (ii) Find the solution to the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$, with the initial conditions $a_0 = 2, a_1 = 5$ and $a_2 = 15$. (8)
- (a) (i) Describe a discrete structure based on a graph that can be used to model airline routes and their flight times. (8)
 - (ii) Show that a simple graph G with n vertices is connected if it has more than (n-1)(n-2)/2 edges. (8)

13.

(b) (i) Show that isomorphism of simple graphs is an equivalence relation.

(8)

- (ii) Derive an algorithm for constructing Euler path in directed graphs.(8)
- 14. (a) (i) Show that the intersection of any two congruence relations on a set is also a congruence relation. (8)
 - (ii) Show that a semigroup with more than one idempotent cannot be a group. Give an example of a semigroup which is not group.
 (8)

Or

(b) (i) Let <H₁,*> and ⟨H₂,* ⟩ be subgroups of a group ⟨G₁,*⟩. Show that ⟨H₁ ∩ H₂,*⟩ is also a subgroup of ⟨G,*⟩. Also show that, in general ⟨H₁ ∪ H₂,*⟩ is not a subgroup of ⟨G,*⟩ except when H₁ ⊆H₂ or H₂⊆H₁.

(ii) Discuss Ring and Fields with suitable examples. (8)

- (a) (i) Show that a complemented, distributive lattice is a Boolean algebra. (8)
 - (ii) Show that the De Morgan's laws hold in a Boolean algebra. That is, show that for all x and y, $(\overline{x \lor y}) = \overline{x} \land \overline{y}$ and $(\overline{x \land y}) = \overline{x} \lor \overline{y}$. (8)

Or

15.

- (b) (i) Show that every non empty subset of a lattice has a least upper bound and a greatest lower bound. (8)
 - (ii) Show that every totally ordered set is a lattice. (8)