## ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009

REGULATIONS - 2007
FOURTH SEMESTER
070030014 - DISCRETE MATHEMATICS
(COMMON TO CSE / IT)

What do you mean by left coset.
Define abelian group.
Define semigroup homomorphism.

## PART - B

( $5 \times 12=60$ MARKS $)$

## ANSWER ANY FIVE QUESTIONS

Max.Marks : 100
PART - A
( $20 \times 2=40$ MARKS $)$

## ANSWER ALL QUESTIONS

Write down the minterms for the three variables $P, Q$ and $R$. Define Tautology. '
Construct the truth table for $(P \vee Q) \vee 7 P$
Write the rules of inference.
Define bound variables.
Symbolize the statement "All men are giants"
Define quantifiers.
What is the function of rules of specification and rules of generalization?
Write any two properties of lattices.
Define equivalence relation.
Define power set.
When do you say a relation $R$ in a set is transitive?
Define characteristic function set.
When do you say a binary operation is distributive?
Define primitive recursive function.
If $f(x)=x+2, g(x)=x-2$. Find $g \circ f$ and $f \circ f$
Define normal subgroup.
21. a) Obtain the principal conjunctive and principal disjunctive normal form of (8) $(7 P \rightarrow R) \wedge(Q \leftrightarrow P)$
b) Construct the truth table for $7(P \wedge Q) \leftrightarrow(7 P \vee 7 Q)$.
22. a) Show that $(x)(P(x) \vee Q(x)) \Rightarrow(x) P(x) \vee(\exists x) Q(x)$.
b) Show that $(x)(P(x) \rightarrow Q(x)) \wedge(x)(Q(x) \rightarrow R(x)) \Rightarrow(P(x) \rightarrow R(x))$.
23. a) Let $X=\{1,2, \ldots, 7\}$ and $R=\{(x, y) / x-y$ is divisible by 3$\}$. Show that R is an equivalence relation and draw the graph of $R$.
b) Let $\langle L, \leq\rangle$ be a lattice in which * and $\oplus$ denote the operations of meet and join
respectively. For any $a, b \in L$ prove that $a \leq b \Leftrightarrow a * b=a \Leftrightarrow a \oplus b=b$.
24. a) Let $X=\{1,2,3\}$ and $f, g, h$ and $s$ be functions fron $X$ to $X$ given by
$f=\{(1,2),(2,3),(3,1)\}, g=\{(1,2),(2,1),(3,3)\}, h=\{(1,1),(2,2),(3,1)\}$,
$s=\{(1,1),(2,2),(3,3)\}$ Find $f \circ g, g \circ f, g \circ s, s \circ g, f \circ s$, and $f \circ h \circ g$
b) Show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ by using characteristic function.

Prove that every finite group $G$ of order $n$ is isomorphic to a permutation group of degree $n$.
26.
a) Show that $7(P \wedge Q)$ follows from $7 P \wedge 7 Q$
b) Show that $(7 P \wedge(7 Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \Leftrightarrow R$.
a) Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$. Then prove that the function $g$ is equal to $f^{-1}$ only (6) if $g \circ f=I_{x}$ and $f \circ g=I_{y}$.
b)

Let $M_{R}$ and $M_{S}$ be the relation matrix given by $M_{R}=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and $M_{S}=\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right)$ Find $M_{\text {RoS }}, M_{\bar{R}}, M_{\bar{S}}, M_{R \sigma \sigma}$ and prove that $M_{R \sigma \bar{S}}=M_{\bar{S} \sigma \bar{R}}$.
28. a) State and prove Lagrange's theorem.
b) Prove that for any commutative monoid $\langle M, *\rangle$, the set of idempotent elements (6) of $M$ forms a submonoid.

