ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS - JUNE 2009

REGULATIONS - 2007

FOURTH SEMESTER - CSE / IT

070030014 - DISCRETE MATHEMATICS

TIME : 3 Hours

(20 x 2 = 40 MARKS)

Max.Marks: 100

ANSWER ALL QUESTIONS

PART - A

- Give the converse and the contrapositive of the implication "If it is raining, then I get wet".
- 2. Prove that $p \rightarrow (p \lor q)$ is a tautology.
- 3. Symbolize the statement "All men are giants."
- 4. Does p follow from $p \lor q$?
- 5. Show that $\forall x (H(x) \rightarrow M(x)) \land H(s) \Rightarrow M(s)$.
- 6. Is the following argument valid?

If taxes are lowered, then income rises. Income rises.

.: Taxes are lowered

- 7. Using existential quantifier, write the equivalent form of \neg (($\forall x$) p(x)).
- 8. Write the expression in English.

 $\forall n [q(n) \rightarrow p(n)]$

where p(n): n is an even integer and q(n): n is divisible by 2 within the universe of all integers.

9. If A ={ α , β } and B={1,2,3}, find (A × B) \cap (B × A)?

10. Find whether

11.	Let X = $\{2,3,6,12,24,36\}$ and the relation \leq be such that $x \leq y$ if x divides y.
	Draw the Hasse diagram of (X, \leq) .
12.	Let X ={1,2,3,4} and R = { (1,1), (1,4), (4,1), (4,4), (2,2), $(2,3), (3,2), (3,3)$ }.
	Write the matrix of R.
13.	Define a one-one function and give an example.
14.	Define characteristic function of a set
15.	Name the two methods which are used to obtain the common hashing
	functions.
16.	Define binary and n-ary operations.
17.	Define normal subgroup of a group.
18.	Find all subgroups of (Z_5 , $+_5$)
19.	Define an encoding function.
20.	For the following (2,5) encoding function e,
	e(00) = 00000 $e(10) = 00111$ $e(01) = 01110$ $e(11) = 11111$ find its
	minimum distance.
	PART – B
	(5 x 12 = 60 MARKS) ANSWER ANY FIVE QUESTIONS

- 21. Obtain the principal conjunctive and principal disjunctive normal form of the formula S given by $(\neg p \rightarrow r) \land (q \leftrightarrow p)$ 12
- 22. Show that the following premises are inconsistent.
 - 1. If Jack misses many classes through illness, then he fails high school.

12

8

- 2. If Jack fails high school, then he is uneducated.
- 3. If Jack reads a lot of books, then he is not uneducated.
- 4. Jack misses many classes through illness and reads a lot of books.
- 23. a) Show that $(\forall x)(p(x)\lor q(x)) \Rightarrow (\forall x) p(x) \lor (\exists x)q(x)$
 - b) Define (i) free variable (ii) bound variable.

1

2

R={(1,2),(2,3),(1,3),(2,1)} is transitive?Justify your answer.

24. a) Let Z be the set of integers and let R be the relation called "congruence modulo 3" defined by

 $R = \{ (x,y)/x \in Z \land y \in Z \land (x - y) \text{ is divisible by 3} \}.$

Show that R is an equivalence relation and determine the equivalence classes generated by the elements of Z.

b) Let (L,≤) be a lattice. Prove that for any a,b,c ∈ L, the following inequalities 6 called the distributive inequalities, hold:

 $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$ $a * (b \oplus c) \ge (a * b) \oplus (a * c)$

25. a) Consider the Boolean polynomial

 $p(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \lor (x_2^{i} \land x_3))$

Construct the truth table for the Boolean function $f:B_3 \rightarrow B$ determined by this Boolean polynomial.

b) Show that the sets of even and odd natural numbers are both recursive.

26. a) If f : X →Y and g : Y → Z are one – one and onto functions, prove that 6 (.g o f)⁻¹ = f⁻¹.g⁻¹.

b) Using characteristic function, show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

27. a) Let e : B^m → Bⁿ be a group code. Then prove that the minimum distance of e 6 is the minimum weight of a nonzero code word.

b) State and prove Lagrange's theorem. 6

28. Suppose that e is an (m,n) encoding function and d is a maximum likelihood 12 decoding function associated with e. Then prove that (e,d) can correct k or fewer errors if and only if the minimum distance of e is atleast 2k+1.
****THE END*****

3

6

6

6

6