Reg. No. :

Question Paper Code : 11141

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Computer Science and Engineering

080230017 — DISCRETE MATHEMATICS

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Define tautology.

2. Construct the truth table for $P \rightarrow Q$.

3. Define existential quantifier

4. Give the symbolic form of the expression : Some men are giant.

5. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. Then find $A \times B$.

6. Define a relation on a set and give an example.

7. If $f: A \to B$, where $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$ is defined by $f = \{(1, a), (2, a), (3, c), (4, d)\}$. Show that f is a function, but f^{-1} is not.

8. If A is a subset of a universal set U, prove that $\psi_A(x) = 0$ if and only if $A = \phi$.

9. Give any two properties of a group.

10. Define a semigroup.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a)

12.

(a)

- (i) Show that the following premises are inconsistence.
 - (1) If jack misses many classes through illness, then he fails high school.
 - (2) If Jack fails high school, then he is uneducated
 - (3) If Jack reads a lot of books, then he is not uneducated.
 - (4) Jack misses many classes through illness and reads a lot of books. (8)

(ii) P.T.
$$P \rightarrow S$$
 is a valued conclusion of the premise.

$$\exists P \lor Q, \ \exists Q \lor R, R \to S.$$
 (8) Or

- (b) (i) Obtain the principle conjunctive normal form of $(\square P \to R) \land (Q \leftrightarrow P)$. Hence find its pdnf. (8)
 - (ii) Show that $(\bigcap P \land (\bigcap Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$, without using truth table.⁽⁸⁾
 - (i) Prove that $(\exists x)[P(x) \land Q(x)] \Rightarrow (\exists x) P(x) \land (\exists x) Q(x)$. Is the converse true? (8)
 - (ii) Show that the premises "one student in the class knows how to write programs in JAVA" and "Everyone who knows how to write program in JAVA can get a high-paying job" imply the conclusion "Someone in this class can get a high-paying job". (8)
- (b) (i) Show that $\exists (x) \ M(x)$ follows logically from the premises (x) $[H(x) \to M(x)]$ and $\exists (x) H(x)$. (8)
 - (ii) Show that $\neg P(A, B)$ follows logically from $(x)(y)[P(x, y) \rightarrow W(x, y)]$ and $\neg W(a, b)$. (8)
- 13. (a) (i) In a complemented and distributive lattice, prove that complement of each element is unique. (8)
 - (ii) Prove that the lattice whose Hasse diagram given below is not modular. (8)

2

11141

- (b) (i) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Define R on A by x Ry if and only if x y is divisible by 3. Prove that R is an equivalence relation. (8)
 - (ii) State and prove De Morgan's laws in Boolean algebra. (8)
- 14. (a) (i) Let $A = \{1, 2, 3\}$ and f, g, h and s be function from A to A given by

$$f = \{(1, 2) (2, 3) (3, 1)\}; g = \{(1, 2) (2, 1) (3, 3)\}$$

$$h = \{(1, 1) (2, 2) (3, 1)\}; s = \{(1, 1) (2, 2) (3, 3)\}.$$
Find $f \circ g, g \circ f, f \circ h \circ g, g \circ s, s \circ s, f \circ s.$
(8)

(ii) Show that the function f (x, y) = x + y is primitive recursive function. Hence compute the value of f (2, 3).

Or

(b) (i) Let
$$f, g$$
 be $f: N \to N$ defined by $f(n) = n + 1$, $g(n) = 2n$.
Find $f \circ f, f \circ g, g \circ f, f \circ g$. (8)

(ii) Let
$$A = \{1, 2, 3\}$$
.

- (1) List all the permutations from A to A
- (2) Find square all the permutation
- (3) Find inverse all the permutations
- (4) Prove that product of permutation is again a permutations. (8)

15. (a) State and prove Lagrange's theorem. Is the converse true. (16)

Or

			1		
		1	0	1	
(b)	Find the code words generated by the parity check matrix $H =$	0	1	1	
		1	0	0	
		0	1	0	
		0	0	1	
	when the encoding function is $e: B^3 \to B^6$.			(16	1

3