27/5

Reg. No.			F.M.				
0							

Question Paper Code: 91127

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Computer Science and Engineering

080230017 - DISCRETE MATHEMATICS

(Regulation 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. State any one of the valid argument forms.
- 2. Construct the truth table for $\sim (p \land q)$.
- 3. Symbolize the expression "All the world loves a lover".
- 4. Define the rule of Universal specification.
- 5. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. Then find $A \times B$.
- 6. Define a relation on a set and give an example.
- 7. Define characteristic function of a set.
- 8. Let f and g be the functions from the set of integer to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the compositions of f and g also g and f?
- 9. Give any two properties of a group.
- 10. Define a semigroup.

$PART - B (5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Show that the following premises are inconsistence:
 - (1) If jack misses many classes through illness, then he fails high school.
 - (2) If Jack fails high school, then he is uneducated.
 - (3) If Jack reads a lot of books, then he is uneducated.
 - (4) Jack misses many classes through illness and reads a lot of books. (8)
 - (ii) Obtain the principle disjunctive normal form of $S: p \land (q \land r) \lor (p \rightarrow q)$. Hence find pcnf. (8)

OR

- - (ii) Determine whether the following compound proposition is a tautology or not $((p \lor q) \land (p \to r) \land (q \to r)) \to r$. (8)
- 12. (a) Show that $(x)(P(x) \vee Q(x)) \Rightarrow (x)P(x) \vee (\exists x) Q(x)$. (16)

OR

- (b) Explain the rules of (i) universal specification (ii) Existential specification (iii) Existential generalization (iv) universal generalization with examples. (16)
- 13. (a) (i) In a complemented and distributive lattice, prove that complement of each element is unique. (8)
 - (ii) Prove that the lattice whose Hasse diagram given below is not modular. (8)

OR

- (b) (i) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Define R on A by x Ry if and only if x y is divisible by 3. Prove that R is an equivalence relation. (8)
 - (ii) State and prove De Morgan's laws in Boolean algebra. (8)
- 14. (a) (i) If X and Y are finite sets, find a necessary condition for the existence of one-to-one, onto and one-to-one correspondence mapping from X to Y. (8)
 - (ii) Let $f: R \to R$ and $g: R \to R$, where R is the set of real numbers. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 z$ and g(x) = x + 4. State whether these function are onto, one-to-one and one-to-one correspondence. (8)

OR

- (b) (i) Show that the function f(x, y) = x + y is primitive recursive. (8)
 - (ii) Let S be a subset of a universal set U. The characteristic function f_s of S is the function from U to the set $\{0, 1\}$ such that $f_s(x) = 1$ if x belongs to S and $f_s(x) = 0$ if x does not belong to S. Let A and B be sets. Show that for all x, $f_{AUB}(x) = f_A(x) + f_B(x) f_A(x) \cdot f_B(x)$. (8)
- 15. (a) (i) Show that the composition of two homomorphism is also homomorphism on semi groups.(8)
 - (ii) If R is the set of real numbers and * is the operation defined by a * b = a + b + 3ab where a, b ∈ R show that {R, *} is a commutative monoid.

OR

- (b) (i) Prove that the set $Z_4 = \{0, 1, 2, 3\}$ is a commutative ring with respect to the binary operation $+_4$ and \times_4 . (8)
 - (ii) Find the code words generated by the parity check matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 when the encoding function is $e : B^3 \to B^6$. (8)

3 91127