Reg. No.

Question Paper Code : 91127

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 Fifth Semester
 Computer Science and Engineering 080230017 - DISCRETE MATHEMATICS
 (Regulation 2008)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

PART - A ($10 \times 2=\mathbf{2 0}$ Marks)

1. State any one of the valid argument forms.
2. Construct the truth table for $\sim(p \wedge q)$.
3. Symbolize the expression "All the world loves a lover".
4. Define the rule of Universal specification.
5. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{1,2,3\}$. Then find $\mathrm{A} \times \mathrm{B}$.
6. Define a relation on a set and give an example.
7. Define characteristic function of a set.
8. Let f and g be the functions from the set of integer to the set of integers defined by $\mathrm{f}(x)=2 x+3$ and $\mathrm{g}(x)=3 x+2$. What is the compositions of f and g also g and f ?
9. Give any two properties of a group.
10. Define a semigroup.

$$
\text { PART }- \text { B }(5 \times 16=80 \text { marks })
$$

11. (a) (i) Show that the following premises are inconsistence :
(1) If jack misses many classes through illness, then he fails high school.
(2) If Jack fails high school, then he is uneducated.
(3) If Jack reads a lot of books, then he is uneducated.
(4) Jack misses many classes through illness and reads a lot of books.
(ii) Obtain the principle disjunctive normal form of
$S: p \wedge 7(q \wedge r) \vee(p \rightarrow q)$. Hence find penf.
OR
(b) (i) P.T $\mathrm{P} \rightarrow \mathrm{S}$ is a valued conclusion of the premise.
$7 \mathrm{P} \vee \mathrm{Q}, 7 \mathrm{Q} \vee \mathrm{R}, \mathrm{R} \rightarrow \mathrm{S}$,
(ii) Determine whether the following compound proposition is a tautology or $\operatorname{not}((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$.
12. (a) Show that $(x)(\mathrm{P}(x) \vee \mathrm{Q}(x)) \Rightarrow(x) \mathrm{P}(x) \vee(\exists x) \mathrm{Q}(x)$.

OR

(b) Explain the rules of (i) universal specification (ii) Existential specification (iii) Existential generalization (iv) universal generalization with examples.
13. (a) (i) In a complemented and distributive lattice, prove that complement of each element is unique.
(ii) Prove that the lattice whose Hasse diagram given below is not modular.

OR
(b) (i) Let $\mathrm{A}=\{1,2,3,4,5,6,7\}$. Define R on A by x Ry if and only if $x-\mathrm{y}$ is divisible by 3 . Prove that R is an equivalence relation.
(ii) State and prove De Morgan's laws in Boolean algebra.
14. (a) (i) If X and Y are finite sets, find a necessary condition for the existence of one-to-one, onto and one-to-one correspondence mapping from X to Y .
(ii) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$, where R is the set of real numbers. Find $\mathrm{f} \circ \mathrm{g}$ and g of, where $\mathrm{f}(x)=x^{2}-\mathrm{z}$ and $\mathrm{g}(x)=x+4$. State whether these function are onto, one-to-one and one-to-one correspondence.

- OR
(b) (i) Show that the function $\mathrm{f}(x, \mathrm{y})=x+\mathrm{y}$ is primitive recursive.
(ii) Let S be a subset of a universal set U. The characteristic function f_{s} of S is the function from U to the set $\{0,1\}$ such that $\mathrm{f}_{\mathrm{s}}(x)=1$ if x belongs to S and $\mathrm{f}_{\mathrm{s}}(x)=0$ if x does not belong to S . Let A and B be sets. Show that for all $x, \mathrm{f}_{\mathrm{AUB}}(x)=\mathrm{f}_{\mathrm{A}}(x)+\mathrm{f}_{\mathrm{B}}(x)-\mathrm{f}_{\mathrm{A}}(x) \cdot \mathrm{f}_{\mathrm{B}}(x)$.

15. (a) (i) Show that the composition of two homomorphism is also homomorphism on semi groups.
(ii) If R is the set of real numbers and * is the operation defined by a ${ }^{*} \mathrm{~b}=$ $a+b+3 a b$ where $a, b \in R$ show that $\{R, *\}$ is a commutative monoid.

OR

(b) (i) Prove that the set $\mathrm{Z}_{4}=(0,1,2,3\}$ is a commutative ring with respect to the binary operation $+_{4}$ and \times_{4}.
(ii) Find the code words generated by the parity check matrix
$\mathrm{H}=\left[\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$ when the encoding function is $\mathrm{e}: \mathrm{B}^{3} \rightarrow \mathrm{~B}^{6}$.

