Reg. No. :

Question Paper Code: 62126

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fifth Semester

Computer Science and Engineering

080230017 — DISCRETE MATHEMATICS

(Regulations 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Using the statement "R: Mark is rich" and "H: Mark is happy". Write the symbolic form of "Mark is poor or he is both rich and unhappy".

2. Show that the propositions $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

3. Define existential quantifier.

- 4. Give the symbolic form of the expression : Some men are giant.
- 5. Let A be a set with 10 distinct elements. How many different binary relations are reflexive?
- 6. For every a in a Lattice (A, \leq) , prove that $a \lor a = a$ and $a \land a = a$.
- 7. If $f: A \to B$, where $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$ is defined by $f = \{(1, a), (2, a), (3, c), (4, d)\}$, show that f is a function, but f^{-1} is not.
- 8. Define recursive function.
- 9. Define Hamming, distance between two n-tuples.
- 10. Give an example of a semi group and a monoid.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Show that the proposition $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ logically equivalent.	are (8)
		(ii)	Construct the truth table of $\exists (p \lor (q \land r)) \rightleftharpoons ((p \lor q) \land (p \lor r)).$	(8)
			Or	1
	(b)	(i)	State and prove Demorgan's laws.	(8)
		(ii)	Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.	(8)
12,	(a)	(i)	Prove that $(\exists x)[P(x) \land Q(x)] \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$. Is converse is true?	the (8)
		(ii)	Show that $\neg P(a, b)$ follows logically from $(x)(y)[P(x, y) \rightarrow W(x)]$ and $\neg W(a, b)$.	(8) (8)

Or

- (i) Show by direct method of proof, that $\forall x(p(x) \lor q(x)) \Rightarrow (\forall x p(x)) \lor (\exists x q(x)).$ (8)
 - (ii) Show that the premises "one student in this class known how to write programs in JAVA" and "Every one who knows how to write programs in JAVA can get a high-paying job" imply the conclusion "Someone in this class can get a high-paying job".
- 13. (a) Draw the Hasse diagram for

(b)

- (i) D_{30} = the set of all divisors of 30.
- (ii) P(A) = the set of all subsets of $A = \{a, b, c\}$. Establish a one-to-one and onto homomorphism between D_{30} and P(A), and hence prove that D_{30} is a Boolean Algebra.

Or

(b) Find, with justification whether the following lattices are (i) distributive (ii) complemented (iii) both.

2

14					
14.	(a)	Show that the function $f: N \times N \to N$ defined by $f(m,n) = 2m + 3n$			
		is not one-to-one and not onto. (8)			
		i) Show that $f(x, y) = x - y$ is partial recursive. (8)			
	1	Or			
	(b)) Using characteristic functions, prove that $f_{A\oplus B}(x) = f_A(x) + f_B(x) - 2f_A(x) f_B(x)$. (8)			
		i) Show that the functions $f: R \to A$ and $g: A \to A$, where			
		$A = (0, \infty)$ defined by $f(x) = 3^{2x} + 1$ and $g(x) = \frac{1}{2}\log_3(x-1)$ are			
		inverses. (8)			
15.	(a)	tate and prove Lagranges theorem. Is the converse true? (16)			
		Or			
		ГI I I I			
	(b)	ind the code words generated by the parity check matrix $H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$			
		Find the code words generated by the parity check matrix $H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$			
		then the encoding function is $e: B^3 \to B^6$. (16)			