\square

Question Paper Code : 62126

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fifth Semester

Computer Science and Engineering
080230017 - DISCRETE MATHEMATICS
(Regulations 2008)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Using the statement " R : Mark is rich" and "H: Mark is happy". Write the symbolic form of "Mark is poor or he is both rich and unhappy".
2. Show that the propositions $\mathrm{p} \rightarrow \mathrm{q}$ and $\rceil p \vee q$ are logically equivalent.
3. Define existential quantifier.
4. Give the symbolic form of the expression : Some men are giant.
5. Let A be a set with 10 distinct elements. How many different binary relations are reflexive?
6. For every a in a Lattice (A, \leq), prove that $a \vee a=a$ and $a \wedge a=a$.
7. If $f: A \rightarrow B$, where $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$ is defined by $f=\{(1, a),(2, a),(3, c),(4, d)\}$, show that f is a function, but f^{-1} is not.
8. Define recursive function.
9. Define Hamming, distance between two n-tuples.
10. Give an example of a semi group and a monoid.
11. (a) (i) Show that the proposition $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
(ii) Construct the truth table of $7(p \vee(q \wedge r)) \rightleftharpoons((p \vee q) \wedge(p \vee r))$.
Or
(b) (i) State and prove Demorgan's laws.
(ii) Determine whether $(\square q \wedge(p \rightarrow q)) \rightarrow\rceil p$ is a tautology.
12. (a) (i) Prove that $(\exists x)[P(x) \wedge Q(x)] \Rightarrow(\exists x) P(x) \wedge(\exists x) Q(x)$. Is the converse is true?
(ii) Show that $\rceil P(a, b)$ follows logically from $(x)(y)[P(x, y) \rightarrow W(x, y)]$ and $\rceil W(a, b)$.

> Or
(b) (i) Show by direct method of proof, that $\forall x(p(x) \vee q(x)) \Rightarrow(\forall x p(x)) \vee(\exists x q(x))$.
(ii) Show that the premises "one student in this class known how to write programs in JAVA" and "Every one who knows how to write programs in JAVA can get a high-paying job" imply the conclusion "Someone in this class can get a high-paying job".
13. (a) Draw the Hasse diagram for
(i) $D_{30}=$ the set of all divisors of 30 .
(ii) $P(A)=$ the set of all subsets of $A=\{a, b, c\}$. Establish a one-to-one and onto homomorphism between D_{30} and $P(A)$, and hence prove that D_{30} is a Boolean Algebra.

Or

(b) Find, with justification whether the following lattices are (i) distributive (ii) complemented (iii) both.

14. (a) (i) Show that the function $f: N \times N \rightarrow N$ defined by $f(m, n)=2 m+3 n$ is not one-to-one and not onto.
(ii) Show that $f(x, y)=x-y$ is partial recursive.

Or
(b) (i) Using characteristic functions, prove that $f_{A \oplus B}(x)=f_{A}(x)+f_{B}(x)-2 f_{A}(x) f_{B}(x)$.
(ii) Show that the functions $f: R \rightarrow A$ and $g: A \rightarrow A$, where $A=(0, \infty)$ defined by $f(x)=3^{2 x}+1$ and $g(x)=\frac{1}{2} \log _{3}(x-1)$ are inverses.
15. (a) State and prove Lagranges theorem. Is the converse true?

Or
(b) Find the code words generated by the parity check matrix $H=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
when the encoding function is $e: B^{3} \rightarrow B^{6}$.

