Reg. No. :

Question Paper Code : 80615

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016

Fifth Semester

Computer Science Engineering

MA 6566 — DISCRETE MATHEMATICS

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Give the contra positive statement of the statement "If there is rain, then I buy an umbrella".

2. Construct the truth table for $P \rightarrow \sim Q$.

3. How many permutations are there on the word "MALAYALAM"?

4. Find the recurrence relation of the sequence $s(n) = a^n : n \ge 1$.

5. Define a complete graph.

6. Draw the graph with the following adjacency matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

7. Define a semi group.

8. Find the idempotent elements of $G = \{1, -1, i, -i\}$ under the binary operation multiplication.

9. Define a lattice.

10. State the De Morgan's laws in a Boolean Algebra.

PART B — $(5 \times 16 = 80 \text{ marks})$

- Obtain the PDNF and PCNF of $(P \land Q) \lor (\sim P \land R)$. 11. (a) (i) (8) (ii) Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M, \sim M$. (8)Or Show that $(x) [P(x) \to Q(x)] \land (x) [Q(x) \to R(x)] \Rightarrow (x) [P(x) \to R(x)].$ (b) (i) (8)Show that $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$, without using (ii) truth table. (8)Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$ for $n \ge 2$ using principle of 12. (a) (i) mathematical induction. (8)
 - (ii) Find the number of integers between 1 to 250 that are not divisible by any of the integers 2, 3, 5 and 7.

- (b) (i) Solve G(k) 7G(k-1) + 10G(k-2) = 8k+6, for $k \ge 2$. (8)
 - (ii) How many bits of string of length 10 contain
 - (1) exactly four 1's
 - (2) at most four 1's
 - (3) at least four 1's
 - (4) an equal number of 0's and 1's.
- (a) (i) Define Isomorphism. Establish an isomorphism for the following graphs. (8)

(ii) Let G be a graph with exactly two vertices has odd degree. Then prove that there is a path between those two vertices.
 (8)

Or

2

13.

- (b) (i) State and prove hand shaking theorem. Also prove that maximum number of edges in a connected graph with n vertices is $\frac{n(n-1)}{2}$.(8)
 - (ii) Give an example of a graph which is
 - (1) Eulerian but not Hamiltonian
 - (2) Hamiltonian but not Eulerian
 - (3) Hamiltonian and Eulerian
 - (4) Neither Hamiltonian nor Eulerian.

14. (a) (i) Show that $(Q^+, *)$ is an abelian group, where * is defined by

$$a * b = \frac{ab}{2}, \forall a, b \in Q^+.$$
(8)

(ii) Let $f: (G, *) \to (G', \Delta)$ be a group homomorphism. Then prove that

(1)
$$[f(a)]^{-1} = f(a^{-1}) \quad \forall a \in G,$$

(2) f(e) is an identity of G', when e is an identity of G. (8)

Or

(b)	(i)	Prove that the intersection of two normal subgroups of a group G i again a normal subgroup of G . (8)	s 3)
	(ii)	State and prove Lagrange's theorem in a group. (8	3)
(a)	(i)	In a complemented and distributive lattice, prove that complement of each element is unique. (8	it 3)
	(ii)	Prove that every chain is a distributive Lattice. (8	3)
		Or .	
(b)	(i)	Consider the Lattice D_{105} with the partial ordered relation divides	5.

- (b) (i) Consider the Lattice D_{105} with the partial ordered relation divides, then
 - (1) Draw the Hasse diagram of D_{105} .
 - (2) Find the complement of each elements of D_{105} .
 - (3) Find the set of atoms of D_{105} .
 - (4) Find the number of subalgebras of D_{105} . (8)

(ii) Show that in a Boolean algebra

$$a \le b \Leftrightarrow a \land \overline{b} = 0 \Leftrightarrow \overline{a} \lor b = 1 \Leftrightarrow \overline{b} \le \overline{a}$$
. (8)

(8)

15.