Reg. No.:			

Question Paper Code: 51578

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Computer Science and Engineering

MA 2265/MA 52/10144 CS 501 — DISCRETE MATHEMATICS

(Common to B.Tech. Information Technology)

(Regulation 2008/2010)

(Common to PTMA 2265 – Discrete Mathematics for B.E. (Part-Time) Third Semester – Computer Science and Engineering – Regulation 2009)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Is $(p \land (p \lor q)) \rightarrow q$ a tautology.
- 2. Let $E = \{-1, 0, 1, 2\}$ denote the universe of discourse. If p(x, y) : x + y = 1, find the truth value of $(\forall x) (\exists y) p(x, y)$.
- 3. State the principle of strong induction.
- 4. What is well ordering principle?
- 5. Define a complete graph.
- 6. Define isomorphism between graphs.
- 7. Prove that identity element is unique in a group.
- 8. Define a Ring.
- 9. Define a Lattice.
- 10. Give an example of a lattice that is not complemented.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Prove that $(p \to q) \land (q \to r) \Rightarrow (p \to r)$. (8)
 - (ii) Prove that $A \to \neg D$ is a conclusion from the premises $A \to B \lor C$, $B \to \neg A$ and $D \to \neg C$ by using conditional proof.(8)

Or

- (b) (i) State and explain the proof methods. (8)
 - (ii) Show that $(\exists x) P(x) \to \forall x Q(x) \Rightarrow (x) (P(x) \to Q(x))$. (8)

- 12. (a) (i) Prove that the number of subsets of set having n elements is 2^n . (8)
 - (ii) Solve the recurrence relation $a_n = -3a_{n-1} 3a_{n-2} a_{n-3}$ given that $a_0 = 5, a_1 = 9$ and $a_2 = 15$. (8)

Or

- (b) (i) Find the number of positive integers ≤ 1000 and not divisible by any of 3, 5, 7 and 22. (8)
 - (ii) Solve the recurrence relation $a_n = 3a_{n-1} + 2, n \ge 1$, with $a_0 = 1$, by the method of generating functions. (8)
- 13. (a) (i) Prove that any undirected graph has an even number of vertices of odd degree. (8)
 - (ii) Show that the following graphs G and H are not isomorphic: (8)

Or

- (b) (i) Define:
 - (1) Adjacency matrix and
 - (2) Incidence matrix of a graph with examples. (8)
 - (ii) Show that a connected multi-graph has an Euler circuit if and only if each of its vertices has an even degree. (8)
- 14. (a) (i) Let (M,*) be a monoid. Prove that there exists a subnet $T \subseteq M^M$ such that (M,*) is isomorphic to the monoid (T,O); here M^M denotes the set of all mappings from M to M and "O" denotes the composition of mappings.
 - (ii) Find the left cosets of the subgroup $H = \{[0], [3]\}$ of the group $[z_6, +_6]$.

Or

- (b) (i) State and prove Lagrange's theorem on finite groups. (8)
 - (ii) Find all the subgroups of $(z_9, +_9)$. (8)
- 15. (a) (i) Show that in a lattice if $a \le b$ and $c \le d$, then $a * c \le b * d$ and $a \oplus c \le b \oplus d$. (8)
 - (ii) In a distributive lattice prove that a*b=a*c and $a\oplus b=a\oplus c$ imply b=c . (8)

Or

2

- (b) (i) Establish de Morgan's laws in a complemented, distributive lattice. (8)
 - (ii) In any Boolean algebra, show that

$$(a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a).$$
 (8)

51578