\square

Question Paper Code : 13212

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Fifth Semester
Computer Science and Engineering 080230017 - DISCRETE MATHEMATICS
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions. PART A - ($10 \times 2=20$ marks $)$

1. Write the statement. "The sun is bright and the humidity is not high" in symbolic form.
2. Given that the value of $p \rightarrow q$ is true, can you determine the value of $\sim p \vee(p \leftrightarrow q)$?
3. Symbolize the expression "All the world loves a lover".
4. Define the rule of Universal specification.
5. Let A be a set with 10 distinct elements. How many different binary relations are reflexive?
6. For every a in a Lattice (A, \leq), prove that $a \vee a=a$ and $a \wedge a=a$.
7. Show that the functions $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ for $x \in R$ are inverses of one another.
8. Define Hashing function.
9. State the Lagrange's theorem.
10. Define the minimum distance of a code whose words are n-tuples.
11. (a) (i) Find the PCNF and PDNF of the statement $(p \wedge q) \vee(p \wedge r) \vee(q \wedge r)$.
(ii) Construct the truth table of $(p \leftrightarrow q) \leftrightarrow((p \wedge q) \vee(\sim p \wedge \sim q))$.

Or

(b) (i) Without using truth tables, prove the equivalence:

$$
\begin{equation*}
p \rightarrow(q \vee r) \equiv(p \rightarrow q) \wedge(p \rightarrow r) \tag{8}
\end{equation*}
$$

(ii) Use the indirect proof to show that

$$
\begin{equation*}
p \rightarrow q, q \rightarrow r, \sim(p \wedge r), p \vee r \Rightarrow r . \tag{8}
\end{equation*}
$$

12. (a) (i) Prove the implication $(x)(P(x) \rightarrow Q(x)) \Rightarrow(x) P(x) \rightarrow(x) Q(x)$.
(ii) Verify the validity of the following argument. Every living thing is a plant or an animal. Rama's dog is alive and it is not a plant. All animals have hearts. Therefore Rama's dog has a heat.

Or
(b) (i) Show that $\exists x(Q(x) \wedge R(x))$ is not implied by the formulas $\exists x(P(x) \wedge Q(x))$ and $\exists y(P(y) \wedge R(y))$ by assuming a universe of discourse which has two elements.
(ii) Using the indirect method to show that

$$
\begin{equation*}
(x)(P(x) \vee Q(x)) \Rightarrow(x) P(x) \vee \exists x Q(x) \tag{8}
\end{equation*}
$$

13. (a) (i) If A, B, and C are sets, prove algebraically that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
(ii) If any Boolean algebra, prove that $a \cdot b^{\prime}+a^{\prime} \cdot b=(a+b) \cdot\left(a^{\prime}+b^{\prime}\right)$.

Or

(b) (i) Let Z be the set of integers and let R be the relation called "congruence modulo 3 " defined by $R=\{(x, y) /(x-y)$ is divisible by 3 . Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z.
(ii) Find all the sub lattices of the lattice $\left\{S_{n}, D\right\}$ for $n=12$ where the relation is given by $D=\{(a, b) /$ a divides $b\}$.
14. (a) (i) Show that the function $f: N \times N \rightarrow N$ defined by $f(m, n)=2 m+3 n$ is not one-to-one and not onto.
(ii) Show that $f(x, y)=x-y$ is partial recursive.

Or
(b) (i) Using characteristic functions, prove that $f_{A \oplus B}(x)=f_{A}(x)+f_{B}(x)-2 f_{A}(x), f_{B}(x)$.
(ii) Show that the functions $f: R \rightarrow A$ and $g: A \rightarrow R$, where $A=(0 \infty)$ defined by $f(x)=3^{2 x}+1$ and $g(x)=\frac{1}{2} \log _{3}(x-1)$ are inverses.
15. (a) (i) Show that the composition of two homomorphism is also homomorphism on semi groups.
(ii) If R is the set of real numbers and * is the operation defined by $a * b=a+b+3 a b$ where $a, b \in R$ show that $\{R, *\}$ is a commutative monoid.

Or
(b) (i) Prove that the set $Z_{4}=\{0,1,2,3\}$ is a commutative ring with respect to the binary operation $+_{4}$ and \times_{4}.
(ii) Find the code words generated by the parity check matrix
$H=\left[\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$ when the encoding function is
$\mathrm{e}: B^{3} \rightarrow B^{6}$.

