1194111	11811	11888	1111	Hill	ш

Reg. No. :						-		
		 	L	L	L		<i>t</i> .	ł

Question Paper Code: 41320

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fifth Semester

Computer Science and Engineering
MA 6566 – DISCRETE MATHEMATICS
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Define proposition.
- 2. Give the symbolic form of "Some men are giant".
- 3. Define Pigeon hole principle.
- 4. How many permutations can be made out of letter or word 'COMPUTER'?
- 5. Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively.
- 6. Define Hamiltonian path.
- 7. Define semi group.
- 8. Prove that in a group idempotent law is true only for identity element.
- 9. Let $A = \{1, 2, 5, 10\}$ with the relation divides. Draw the Hasse diagram.
- 10. Prove that a lattice with five elements is not a Boolean algebra.

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) i) Show that $(7P \land (7Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$, without using truth table.

(8)

(8)

ii) Show that using Rule C.P, $7P \lor Q$, $7Q \lor R$, $R \to S \Rightarrow P \to S$

b) i) Find the PCNF of (P \vee R) \wedge (P \vee 7Q) Also find its PDNF, without using truth table.

(8)

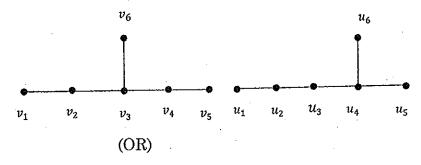
ii) Show that $(\forall x) [P(x) \lor Q(x)] \Rightarrow (\forall x) P(x) \lor (\exists x) Q(x)$.

(8)

(8)

(8)

- 12. a) i) Prove that $n^3 n$ is divisible by 3 for $n \ge 1$
 - ii) Solve G(k) 7G(k-1) + 10G(k-2) = 8k + 6. (8)
 - b) i) Find the numbers between 1 to 250 that are not divisible by any of the integers 2 or 3 or 5 or 7.
 - ii) Solve using generating functions: S(n) + 3S(n-1) 4S(n-2) = 0; $n \ge 2$ given S(0) = 3, S(1) = -2. (8)
- 13. a) i) State and prove Hand shaking theorem. Hence prove that for any simple graph G with n vertices, the number of edges of G is less than or equal to $\frac{n(n-1)}{2}$ (8)
 - ii) Establish the isomorphism of the following pairs of graphs. (8)



- b) i) Prove that a graph G is disconnected if and only if its vertex set V can be partitioned into two non-empty, disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in subset V_1 and the other in subset V_2 .
 - ii) Prove that a connected graph G is an Euler graph if and only if all vertices of G are of even degree. (8)
- 14. a) i) Show that (Q⁺, *) is an abelian group, where * is defined by

$$\mathbf{a} * \mathbf{b} = \frac{\mathbf{ab}}{2}, \ \forall \mathbf{a}, \ \mathbf{b} \in \mathbf{Q}^+$$

- ii) Prove that kernel of a homomorphism is a normal subgroup of G. (8)
 (OR)
- b) i) Prove that intersection of two normal subgroups of a group G is again a normal subgroup of G. (8)
 - ii) Let G be a finite group and H be a subgroup of G. Then prove that order of H divides order of G. (8

41320

(8)

(8)

- 15. a) i) Show that (N, ≤) is a partially ordered set, where N is the set of all positive integers and ≤ is a relation defined by m ≤ n if and only if n m is a non-negative integer.
 - ii) In a complemented and distributive lattice, prove that complement of each element is unique.(8)

(OR)

- b) i) Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ with a relation $x \le y$ if and only if x divides y. Find:
 - i) All lower bounds of 10 and 15
 - ii) GLB of 10 and 15
 - iii) All upper bound are 10 and 15
 - iv) LUB of 10 and 15
 - v) Draw the Hasse diagram for D₃₀.

ii) Let (L, , \vee , \wedge , \leq) be a distributive lattice and a, b, \in L if a \wedge b = a \wedge c and a \vee b = a \vee c. Then show that b = c. (8)