(b) (i) Examine whether the lattice given in the following Hasse diagram is distributive or not. (4)

(ii) If P(S) is the power set of a non-empty S, prove that $\{P(S), Y, I, \setminus, \phi, S\}$ is a Boolean algebra. (12)

53255

Reg. No.:	 		 	1			
	_ ,						

Question Paper Code: 53255

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fifth Semester

Computer Science Engineering

MA 6566 — DISCRETE MATHEMATICS

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Give the contrapositive statement of the statement 'If there is rain, then I buy an umbrella".
- 2. Construct the truth table for $P \rightarrow \sim Q$.
- 3. Find the sequence whose generating function is $\frac{1}{1-9x^2}$.
- 4. How many ways the letters in the word "Committee" can be arranged?
- 5. How many edges are there in a graph with 10 vertices each of degree 3?
- 6. Give an example of self complementary graph.
- 7. Prove that identity element in a group is unique.
- 8. Prove that every cyclic group is abelian.
- 9. Let $X = \{1, 2, 3, 4, 5, 6\}$ and R be a relation defined as $x, y \in R$ if and only if x y is divisible by 3. Find the elements of the relation R.
- 10. Show that the absorption laws are valid in a Boolean algebra.

PART B
$$-$$
 (5 × 16 = 80 marks)

- 11. (a) (i) Obtain the principal conjunctive normal form and principal disjunctive normal form of $(\neg P \rightarrow R) \land (Q \leftrightarrow R)$ by using equivalences. (8)
 - (ii) Use rules of inferences to obtain the conclusion of the following arguments:

"Babu is a student in this class, knows how to write programmes in JAVA'. 'Everyone who knows how to write programmes in JAVA can get a high-paying job'. Therefore, 'someone in this class can get a high-paying job'.

(8)

Or

- (b) (i) Show that $(P \lor Q) \land \neg \neg P \land \neg Q \lor \neg Q) \lor (\neg P \land \neg R)$ is a tautology by using equivalences. (8)
 - (ii) Show that $R \to S$ is logically derived from the premises $P \to (Q \to S)$, $\neg R \lor P$ and Q. (8)
- 12. (a) (i) Find the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 5 and 7. (8)
 - (ii) Use generating function to solve the recurrence relation $S(n+1)-2S(n)=4^n$ with $S(0)=1, n\geq 0$. (8)

Or

- (b) (i) Using mathematical induction show that $\sum_{r=0}^{n} 3^{r} = \frac{3^{n+1} 1}{2}$. (8)
 - (ii) There are six men and five women in a room. Find the number of ways four persons can be drawn from the room if
 - (1) they can be male or female,
 - (2) two must be men and two women,
 - (3) they must all are of the same sex. (8)
- 13. (a) (i) Establish the isomorphism for the following graphs. (8

(ii) Prove that a graph G is disconnected if and only if the vertex set V is partitioned into two non-empty subsets U and W such that there exists no edge in G whose one vertex is in U and one vertex is in W.

Or

- (b) (i) Show that K_n has a Hamiltonian cycle for n > 3. What is the maximum number of edge disjoint cycles possible in K_n ? Obtain all the edge disjoint cycles in K_7 . (8)
 - (ii) Prove that maximum number of edges in a bipartite graph with n vertices is $\frac{n^2}{4}$. (8)
- 14. (a) (i) Show that $(Q^+,*)$ is an abelian group, where * is defined by $a*b=\frac{ab}{2}, \forall a,b\in Q^+$. (8)
 - (ii) Let $f:(G,*)\to (G',\Delta)$ be a group homomorphism Then prove that
 - (1) $[f(\alpha)]^{-1} = f(\alpha^{-1}) \forall \alpha \in G.$
 - (2) f(e) is an identity of G', when e is an identity of G. (8)

 $\Im \mathbf{r}$

- (b) (i) Prove that the intersection of two normal subgroups of a group G is again a normal subgroup of G. (8)
 - (ii) State and prove Lagrange's theorem in a group. (8)
- 15. (a) (i) Let $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and let the relation R be divisor on D_{30} .

Find

- (1) all the lower bounds of 10 and 15
- (2) the glb of 10 and 15
- (3) all upper bound of 10 and 15
- (4) the lub of 10 and 15
- (5) draw the Hasse diagram. (8
- (ii) Prove that in a Boolean algebra $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$.

)r

3

53255

.