	-		Section 1975		A	SALT SALES	
Reg. No.:							

Question Paper Code: 73765

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

First Semester

Civil Engineering

MA 2111/MA 12/080030001 — MATHEMATICS - I

(Common to All Branches except Marine Engineering)

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- 1. Find the eigenvalue of a matrix $\begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$ corresponding to the eigenvector $\begin{bmatrix} -4 & -2 & 4 \end{bmatrix}^T$.
- 2. If eigenvalues of a matrix A are 2,-1,-3, then find the eigenvalues of the matrix A^2-2I .
- 3. Find the centre and radius of the sphere $4(x^2 + y^2 + z^2) 8x + 12y 16z 20 = 0$.
- 4. Find the equation of the right circular cone whose vertex is origin, axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and semi vertical angle is 30°.
- 5. Find the equation of the right circular cylinder whose axis is z-axis and radius is 'a'.
- 6. Find the envelope of the lines $x \csc \theta y \cot \theta = a$, θ being the parameter.
- 7. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.

- 8. Find the Taylor series expansion of x^y near the point (1,1) upto the first degree terms.
- 9. Find the values $\iint xy \, dx \, dy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 10. Find the area of $r^2 = a^2 \cos 2\theta$, by double integration.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the eigenvalues and the eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$ (8)
 - (ii) Using Cayley-Hamilton theorem find A^{-1} for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$ (8)

Or

- (b) Reduce the quadratic form $Q = 3x^2 3y^2 5z^2 2xy 6yz 6xz$ to its canonical form using orthogonal transformation. Also find its rank, index and signature. (16)
- 12. (a) (i) Find the equation of the smallest sphere which contains the circle given by the equations $x^2 + y^2 + z^2 + 2x + 4y + 6z 11 = 0$ and 2x + y + 2z + 1 = 0.
 - (ii) The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes at A, B and C. Find the equation of the cone whose vertex is the origin and the guiding curve is the circle ABC.

Or

- (b) (i) Find the centre and radius of the circle given by $x^2 + y^2 + z^2 2x 4y 6z 2 = 0 \text{ and } x + 2y + 2z 20 = 0.$ (8)
 - (ii) Find the equation of the right circular cylinder of radius 3 and whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$. (8)

2 73765

- 13. (a) (i) Find the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c}$. (8)
 - (ii) Obtain the equation of the evolute of the parabola $y^2 = 4ax$. (8)
 - (b) (i) Find the centre of curvature and circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x} + \sqrt{y} = \sqrt{a}$. (8)
 - (ii) Find the envelope of the family of straight lines $\frac{ax}{\cos \theta} \frac{by}{\sin \theta} = a^2 b^2.$ (8)
- 14. (a) (i) If $u = \tan^{-1} \left[\frac{x+y}{\sqrt{x} + \sqrt{y}} \right]$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$. (8)
 - (ii) Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 if $y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3}$. (8)
 - (b) (i) Expand $\tan^{-1}\left(\frac{y}{x}\right)$ as a Taylor series about the point (1,1) upto 2^{nd} degree terms. (8)
 - (ii) Find the shortest distance from the point (1,0) to the parabola $y^2 = 4x$. (8)
- 15. (a) (i) Change the order of integration $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy dx$ and hence evaluate. (8)
 - (ii) Transform the integral into polar coordinates and hence evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} \, dy dx.$ (8)

Or

- (b) (i) Find by double integration, the area between the two parabolas $3y^2 = 25x$ and $5x^2 = 9y$. (8)
 - (ii) Find the volume of the portion of the cylinder $x^2 + y^2 = 1$ intercepted between the plane x = 0 and the paraboloid $x^2 + y^2 = 4 z$. (8)