Reg. No.

Question Paper Code : 57495

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
First Semester
Mechanical Engineering
MA 6151 - MATHEMATICS - I

(Common to all branches except Marine Engineering)
(Regulation 2013)
Time : Three Hours
Maximum : $\mathbf{1 0 0}$ Marks

Answer ALL questions.

$$
\text { PART }-\mathbf{A}(10 \times 2=20 \text { Marks })
$$

1. If the eigen values of the matrix A of order 3×3 are 2,3 and 1 , then find the eigen values of adjoint of A.
2. If λ is the eigen value of the matrix A, then prove that λ^{2} is the eigen value of A^{2}.
3. Give an example for conditionally convergent series.
4. Test the convergence of the series $1-\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}-$.
5. Define evolutes of the curve.
6. Find the envelope of the family of curves $y=m x+\frac{1}{m}$, where m is the parameter.
7. If $x^{2}+y^{2}=1$, then find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
8. If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(r, \theta)}{\partial(x, y)}$
9. Sketch the region of integration in $\int_{0}^{1} \int_{0}^{x} d y d x$.
10. Find the area bounded by the lines $x=0, y=1, x=1$ and $y=0$.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Find the eigen values and the eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
(ii) Verify Cayley-Hamilton theorem for $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$. Hence using it find A^{-1}.

OR

(b) Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ into a canonical form by an orthogonal reduction. Hence find its rank and nature.
12. (a) (i) Discuss the convergence and the divergence of the following series:

$$
\begin{equation*}
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots . . \text { to } \infty \tag{8}
\end{equation*}
$$

(ii) Find the interval of the convergence of the series : $x-\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}-\frac{x^{4}}{\sqrt{4}}+\ldots$.
(b) (i) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \left(\frac{1}{n}\right)$.
(ii) Test the convergence of the series $\frac{x}{1+x}+\frac{x^{2}}{1+x^{2}}+\frac{x^{3}}{1+x^{3}}+\ldots$.to ∞
13. (a) (i) Find the equation of circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
(ii) Find the equation of the evolutes of the parabola $y^{2}=4 a x$.

OR

(b) (i) Find the radius of curvature at t on $x=e^{t} \cos t, y=e^{t} \sin t$.
(ii) Find the envelope of the family of straight lines $y=m x-2 a m-\mathrm{am}^{3}$, where m is the parameter.
14. (a) (i) Expand $\mathrm{e}^{x} \log (1+\mathrm{y})$ in powers of x and y up to the third degree terms using Taylor's theorem.
(ii) If $x=\mathrm{r} \sin \theta \cos \phi, \mathrm{y}=\mathrm{r} \sin \theta \sin \phi, \mathrm{z}=\mathrm{r} \cos \theta$, find $\frac{\partial(x, y, z)}{\partial(\mathrm{r}, \theta, \phi)}$.

OR

(b) (i) A rectangular box open at the top is to have volume of 32 cubic ft . Find the dimension of the box requiring least material for its construction.
(ii) If $w=f(y-z, z-x, x-y)$, then show that $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}=0$.
15. (a) (i) By changing the order of integration evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$.
(ii) By changing to polar co-ordinates, evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} d x d y$.
(8)

OR

(b) (i) Evaluate $\iint x y d x$ dy over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$
(ii) Evaluate $\iiint_{V} \frac{\mathrm{dzdyd} x}{(x+y+z+1)^{3}}$, where V is the region bounded by $x=0$,

$$
\begin{equation*}
\mathrm{y}=0, \mathrm{z}=0 \text { and } x+\mathrm{y}+\mathrm{z}=1 \tag{8}
\end{equation*}
$$

