Reg. No. \square

Question Paper Code : 51769

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 First Semester

Civil Engineering

MA 2111/MA 12/080030001 - MATHEMATICS - I

(Common to all branches)
(Regulations 2008)
Time : Three Hours
Maximum : $\mathbf{1 0 0}$ Marks

Answer ALL questions.

$$
\text { PART }-\mathbf{A}(10 \times 2=20 \text { Marks })
$$

1. The product of two eigen values of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16 . Find the third eigen value.
2. When is a Q.F. said to be singular ? What is its rank then ?
3. Find the equation of the sphere whose centre is $(1,2,-1)$ and which touches the plane $2 x-y+z+3=0$.
4. Find the radius of curvature of the curve $x^{2}+y^{2}-4 x+2 y-8=0$.
5. Find the curvature of the circle $x^{2}+y^{2}=25$ at the point $(4,3)$.
6. Define evolute of the curve.
7. If $u=\frac{x+y}{x y}$ find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
8. State Euler's theorem for homogeneous function.
9. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta$
10. Change the order of integration in $\int_{0}^{1} \int_{0}^{2 \sqrt{x}} f(x, y) d y d x$.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Obtain the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
(ii) Using Cayley - Hamilton theorem, find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & -2 \tag{8}\\
2 & 5 & -4 \\
3 & 7 & -5
\end{array}\right] \text { and also verify the theorem. }
$$

OR

(b) Reduce $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ into a canonical form by an orthogonal reduction. Also find its rank, signature, index and nature.
12. (a) (i) Find the equations of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y+6 z+5=0$ which are parallel to the plane $x+4 y+$ $8 z=0$. Find also their points of contact.
(ii) Find the equation of the right circular cone whose vertex is $(2,1,0)$, semivertical angle is 30° and the axis is the line $\frac{x-2}{3}=\frac{y-1}{1}=\frac{z}{2}$.
(b) (i) Find the equation of the cylinder whose generators are parallel to $\frac{x}{2}=\frac{y}{2}=\frac{z}{-3}$ and whose guiding curve is the ellipse $3 x^{2}+y^{3}=3, z=2$.
(ii) Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z=3$ and also find the point of contact.
13. (a) Find the equation of the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.

OR

(b) Find the evolute of the hyperbola $\frac{x^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$.
14. (a) (i) If $u=\tan ^{-1}\left[\frac{x^{3}+y^{3}}{x-y}\right]$, using Euler's theorem on homogeneous functions,

$$
\begin{equation*}
\text { find the value of } x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}} \tag{8}
\end{equation*}
$$

(ii) Find the maximum and minimum values of

$$
\begin{equation*}
f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x \tag{8}
\end{equation*}
$$

OR

(b) (i) Obtain the Taylor's series expansion of $x^{3}+4 x^{2} y-2 x y^{2}+y^{3}$ near the point $(-1,1)$ upto the third degree terms.
(ii) A rectangular box, open at the top, is to have a volume of 108 c.c. Find the dimensions of the box that requires the least material for its construction.
15. (a) (i) Evaluate $\iint x y d x d y$ over the region in the positive quadrant bounded by

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{6}
\end{equation*}
$$

(ii) Find the value of $\iiint x y z d x d y d z$ through the positive spherical octant for which $x^{2}+y^{2}+z^{2} \leq a^{2}$.

OR

(b) (i) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d y d x$ and hence evaluate it.
(ii) Evaluate, by changing to polar co-ordinates, the integral

$$
\begin{equation*}
\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x d y \tag{8}
\end{equation*}
$$

