ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE
B.E. / B.TECH. DEGREE EXAMINATIONS : NOV I DEC 2011

REGULATIONS : 2008
FIRST SEMESTER
080030001 - MATHEMATICS I
(COMMON TO ALL BRANCHES)

Time : 3 Hours

PART - A

ANSWER ALL QUESTIONS

Max. Marks : 100
(10 x $2=20$ Marks)

Obtain the Characteristic equation of $\left[\begin{array}{cc}1 & -2 \\ -5 & 4\end{array}\right]$
Show that the matrix $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is orthogonal
Define a right circular cylinder.
Find the equation of a sphere which passes through the point $(1,-2,3)$
and the circle $z=0, x^{2}+y^{2}+z^{2}=9$.
Find the radius of curvature at any point (x, y) on $y=c \log \sec \frac{x}{c}$.
Obtain the evolute of the parabola $x^{2}=4 a y$ as the envelope of normals.
Find $\frac{d y}{d x}$ if $u=\tan ^{-1}\left(\frac{x}{y}\right)$ where $x^{2}+y^{2}=a^{2}$.
8. Point out the necessary and sufficient condition for maxima and minima of function of two variables.
9. Evaluate $\int_{0}^{1} d x \int_{0}^{x} e^{y / x} d y$.

Find the volume of a sphere of radius a by triple integral

PART - B
(5 $\times 16=80$ Marks $)$

ANSWER ALL QUESTIONS

11. a.(i) State the Cayley-Hamilton theorem. Using Cayley-Hamilton theorem, find 8 A^{-1} if $A=\left[\begin{array}{lll}1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5\end{array}\right]$. Also verify the theorem.
(ii) Diagonalise the matrix using orthogonal transformation

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

(OR)
b. Reduce the quadratic form $3 x_{1}^{2}+5 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}+2 x_{3} x_{1}-2 x_{1} x_{2}$ into a canonical form by orthogonal transformation. Also find the rank, index, signature and nature of the quadratic form.
12. a.(i) Show that the spheres $x^{2}+y^{2}+z^{2}+6 y+2 z+8=0$ and $x^{2}+y^{2}+z^{2}+6 x+8 y+4 z+20=0$ intersect at right angles. Find their plane of intersection.
(ii) Find the surface of the solid formed by revolving the cardioid $r=a(1+\cos \theta)$. about the initial line.
(OR)
12. b.(i) Find the equation of the normal at any point θ to the curve 10 $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ Verify that these normals touch a circle with its centre at the origin and whose radius is constant.
(ii) Find the area common to the parabola $y^{2}=a x$ and the circle $x^{2}+y^{2}=4 a x$

13 a.(i) Show that the evolute of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ is 8 another cycloid $x=a(\theta+\sin \theta), y=-a(1-\cos \theta)$.
(ii) Find the envelope of the family of straight lines $\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}$.

(OR)

13. b. (i) Find the radius of curvature at $(a, 0)$ on the curve $x y^{2}=a^{3}-x^{3}$
(ii) Find the equation of the evolutes of the Parabola $y^{2}=4 a x$
14. a. (i) Find the value of the largest rectangular solid which can be inscribed in the 8 ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
(ii) If Z is a function of X and y and \mathcal{U} and \mathcal{V} are any other two variables such that $u=l x+m y, v=l y-m x$. Show that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\left(l^{2}+m^{2}\right)\left(\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}\right)$
15. b. (i) Find the Taylors series for $f(x, y)=e^{y} \log (1+x)$ in powers of x and y upto third degree terms.
(ii) If $\mathrm{u}=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
16. a.(i) Fine the area bounded by parabolas $y^{2}=4-x$ and $y^{2}=x$ by double 8 integration.
(ii) By transforming into cylindrical coordinates, evaluate the integral 8 $\iiint\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ taken over the region of space defined by $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1$

(OR)

15. b.(i) Change the order of integration is $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$ and hence evaluate it.
(ii) Evaluate $\int_{1}^{3} \int_{1 / x}^{1} \int_{0}^{\sqrt{x y}} x y d z d y d x$
*****THE END*****
