Reg. No. : \square

Question Paper Code : 51010

B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2012.

First Semester
MA 2111 - MATHEMATICS - I
(Common to all branches)

(Regulations 2008)

Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A $-(10 \times 2=20$ marks $)$

1. The product of two eigenvalues of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16. Find the third eigenvalue of A .
2. Can $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ be diagonalized? Why?
3. Find the equation of the sphere concentric with $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0$ and passing through the point $(1,2,3)$.
4. Find the equation of the right circular cone with vertex at the origin, whose axis is $\frac{x}{1}=\frac{y}{-1}=\frac{z}{2}$ and with a semi-vertical angle 30°.
5. Find the radius of curvature for $y=e^{x}$ at the point where it cuts the y-axis.
6. Find the envelope of the family of lines $\frac{x}{t}+y t=2 c$, where t is the parameter.
7. If $u=x^{y}$, show that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
8. If $x=u^{2}-v^{2}$ and $y=2 u v$, find the Jacobian of x and y with respect to u and v.
9. Express $\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d x d y$ in polar co-ordinates.
10. Evaluate $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x+y} d x d y d z$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the eigenvalues and eigenvectors of $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$.
(ii) Find A^{n} using Cayley Hamilton theorem, taking $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. Hence find A^{3}.

Or
(b) Reduce the quadratic form $2 x^{2}+5 y^{2}+3 z^{2}+4 x y$ to canonical form by orthogonal reduction and state its nature.
12. (a) (i) Obtain the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0, x+y+z=3$ as the greatest circle. (8)
(ii) Find the equation of the cone formed by rotating the line $2 x+3 y=6, z=0$ about the y-axis.
(b) (i) Obtain the equation of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y+6 z-7=0$ which intersect in the line $6 x-3 y-23=0=3 z+2$.
(ii) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$.
13. (a) (i) If $y=\frac{a x}{a+x}$, prove that $\left(\frac{2 \rho}{a}\right)^{2 / 3}=\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{x}\right)^{2}$, where ρ is the radius of curvature.
(ii) Find the circle of curvature of $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $\left(\frac{a}{4}, \frac{\dot{a}}{4}\right)$.

Or
(b) (i) Find the evolute of the parabola $y^{2}=4 a x$.
(ii) Find the envelope of $\frac{x}{l}+\frac{y}{m}=1$, where the parameters l and m are connected by the relation $\frac{l}{a}+\frac{m}{b}=1$ (a and b are constants).
14. (a) (i) If $z=f(x, y)$, where $x=u^{2}-v^{2}, y=2 u v$, prove that $\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=4\left(u^{2}+v^{2}\right)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)$.
(ii) Find the Taylor's series expansion of $x^{2} y^{2}+2 x^{2} y+3 x y^{2}$ in powers of $(x+2)$ and $(y-1)$ upto $3^{\text {rd }}$ degree terms.

Or

(b) (i) If $x+y+z=u, y+z=u v, z=u v w$, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.
(ii) Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.

$$
b\left(\sqrt{a^{2}-x^{2}}\right)
$$

15. (a) (i) Change the order of integration in $\int_{0}^{a} \int_{0}^{a} x^{2} d y d x$ and then evaluate it.
(ii) Transform the double integral $\int_{0}^{a} \int_{\sqrt{a x-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}$ into polar co-ordinates and then evaluate it.
(b) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$.
(ii) Find the smaller of the areas bounded by the ellipse $4 x^{2}+9 y^{2}=36$ and the straight line $2 x+3 y=6$.
