\square

Question Paper Code : 31519

B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2014.

First Semester
Civil Engineering
MA 2111/MA 12/080030001 - MATHEMATICS - I
(Common to All Branches)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. The product of two eigenvalues of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16. Find the third eigenvalue.
2. Discuss the nature of the quadratic form $2 x^{2}+3 y^{2}+2 z^{2}+2 x y$.
3. Find the centre and radius of the sphere

$$
2 x^{2}+2 y^{2}+2 z^{2}+6 x-6 y+8 z+9=0
$$

4. Prove that the equation $x^{2}-2 y^{2}+3 z^{2}+5 y z-6 z x-4 x y+8 x-19 y-$ $2 z-20=0$ represents a cone with vertex $(1,-2,3)$.
5. Find the radius of curvature of the curve $x y=c^{2}$ at (c, c).
6. Find the envelope of the lines $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1, \theta$ being the parameter.
7. If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
8. Find the Taylor series expansion of x^{y} near the point $(1,1)$ upto the first degree terms.
9. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r d r d \theta$.
10. Change the order of integration in $\int_{0}^{1} \int_{0}^{2 \sqrt{x}} f(x, y) d y d x$.

PART B $-(5 \times 16=80$ marks $)$
11. (a) (i) Find the eigenvalues and the eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \tag{8}\\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

(ii) Using Cayley-Hamilton theorem find A^{-1} for the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \tag{8}\\
2, & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

Or
(b) Reduce the quadratic form $Q=3 x^{2}-3 y^{2}-5 z^{2}-2 x y-6 y z-6 x z$ to its canonical form using orthogonal transformation. Also find its rank, index and signature.
12. (a) (i) Find the centre and radius of the circle given by $x^{2}+y^{2}+z^{2}+2 x-2 y+4 z-19=0$ and $x+2 y+2 z+7=0$.
(ii) Find the equation of the cone whose vertex is the point $(1,1,0)$ and whose base in the curve $y=0, x^{2}+z^{2}=4$.

Or

(b) (i) Find the condition that the plane $l x+m y+n z=p$ may be a tangent plane to the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$.
(ii) Find the equation of the right circular cylinder which passes through the circle $x^{2}+y^{2}+z^{2}=9, x+y+z=3$.
13. (a) (i) Prove that for the curve $y=\frac{a x}{a+x},\left(\frac{2 \rho}{a}\right)^{\frac{2}{3}}=\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{x}\right)^{2}$.
(ii) Find the envelope of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where a and b are connected by the relation $a^{2}+b^{2}=c^{2}, c$ being a constant.

Or

(b) (i) Obtain the equation of the evolute of the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$.
(ii) Prove that the radius of curvature of the curve $x y^{2}=a^{3}-x^{3}$ at the point $(a, 0)$ is $\frac{3 a}{2}$.
14. (a) (i) If $z=f(x, y)$ and $x=r \cos \theta, y=r \sin \theta$ prove that

$$
\begin{equation*}
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2} \tag{8}
\end{equation*}
$$

(ii) Discuss the maxima and minima of $f(x, y)=x^{2}+x y+y^{2}+\frac{1}{x}+\frac{1}{y}$.

Or

(b) (i) If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$ prove that $\frac{\partial\left(y_{1}, y_{2}, y_{3}\right)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=4$.
(ii) A rectangular box open at the top is to have a capacity of $108 \mathrm{cu} . \mathrm{ms}$. Find the dimensions of the box requiring the least material for its construction.
15. (a) (i) Evaluate $\iint x y d x d y$ over the region in the positive quadrant bounded by $\frac{x}{a}+\frac{y}{b}=1$.
(ii) Find the value of $\iiint x y z d x d y d z$ through the positive spherical octant for which $x^{2}+y^{2}+z^{2} \leq a^{2}$.

Or
(b) (i) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d y d x$ and hence evaluate it.
(ii) Evaluate, by changing to polar co-ordinates, the integral $\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x d y$

