\square

Question Paper Code : 21769

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

First Semester
Civil Engineering
MA 2111/MA 12/080030001 - MATHEMATICS - I
(Common to all branches)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20 \mathrm{marks})$

1. Find the eigenvalue of a matrix $\left[\begin{array}{ccc}7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5\end{array}\right]$ corresponding to the eigenvector $\left[\begin{array}{lll}-4 & -2 & 4\end{array}\right]^{T}$.
2. If eigenvalues of a matrix A are $2,-1,-3$, then find the eigenvalues of the matrix $A^{2}-2 I$.
3. Find the equation of the tangent plane at the point $(1,1,-2)$ on the sphere $x^{2}+y^{2}+z^{2}-2 x-y-z-5=0$.
4. Obtain the equation of the right circular cone whose vertex is at the origin and semi-vertical angle is 45° and having y -axis as its axis.
5. Find the curvature of the circle $x^{2}+y^{2}=25$ at the point $(4,3)$.
6. Define evolute of the curve.
7. Find $\frac{d u}{d x}$ if $u=\sin \left(x^{2}+y^{2}\right)$, where $3 x^{2}+y^{3}=4$.
8. Find the Jacobian of u and v with respect to x and y, if $u=2 x y$ and $v=x^{2}-y^{2}$.
9. Express $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$ into polar coordinates.
10. Evaluate : $\int_{0}^{2} \int_{0}^{y} \int_{0}^{x} d x d y d z$.

PART B $-(5 \times 16=80$ marks $)$
11. (a) (i) Verify the Cayley-Hamilton theorem for a matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and hence find A^{-1}.
(ii) Find the eigenvalues and eigenvectors of a matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.

Or
(b) Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y-8 y z+4 z x$ to the canonical form through an orthogonal transformation. Hence find the following :
(i) Nature of the quadratic form
(ii) Rank, index and signature of the quadratic form, and
(iii) A set of non-zero values of x, y, z which will make the quadratic form zero.
12. (a) (i) Find the equation of the smallest sphere which contains the circle given by the equations $x^{2}+y^{2}+z^{2}+2 x+4 y+6 z-11=0$ and $2 x+y+2 z+1=0$.
(ii) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B and C. Find the equation of the cone whose vertex is the origin and the guiding curve is the circle $A B C$.

Or
(b) (i) Find the centre and radius of the circle given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-2=0 \text { and } x+2 y+2 z-20=0 \tag{8}
\end{equation*}
$$

(ii) Find the equation of the right circular cylinder of radius 3 and whose axis is the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$.
13. (a) (i) Find the radius of curvature of the curve $y^{2}=\frac{\left(a^{3}-x^{3}\right)}{x}$ at the point $(a, 0)$.
(ii) Find the envelope of the straight line $y \cos \theta-x \sin \theta=a \cos 2 \theta, \theta$ being the parameter.

Or
(b) (i) Find the equation of the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=2$ at the point $(1,1)$.
(ii) Find the equation of the evolute of the curve $x=a(\cos t+t \sin t)$, $y=a(\sin t-t \cos t)$.
14. (a) (i) If $u=\tan ^{-1}\left[\frac{x^{3}+y^{3}}{x-y}\right]$, using Euler's theorem on homogeneous functions, find the value of $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$.
(ii) Find the maximum and minimum values of

$$
\begin{equation*}
f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x \tag{8}
\end{equation*}
$$

Or
(b) (i) Obtain the Taylor's series expansion of $x^{3}+4 x^{2} y-2 x y^{2}+y^{3}$ near the point ($-1,1$) upto the third degree terms.
(ii) A rectangular box, open at the top, is to have a volume of 108 c.c. Find the dimensions of the box that requires the least material for its construction.
15. (a) (i) Change the order of integration $\int_{0}^{1-x} x y d x d y$ and hence evaluate. (8)
(ii) Find the area that lies outside the circle $r=2 \cos \theta$ and inside the circle $r=6 \cos \theta$, using double integration.

Or
(b) (i) Find the volume of the cylinder $x^{2}+y^{2}=25$ bounded by the planes $z=1$ and $x+z=10$.
(ii) Evaluate $\iint_{R} \frac{x y d x d y}{\sqrt{x^{2}+y^{2}}}$ where R is the region in the first quadrant enclosed by the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$.

