ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : DEC 10 / JAN 11 REGULATIONS : 2008

FIRST SEMESTER
080030001 - MATHEMATICS I
(COMMON TO ALL BRANCHES)

Time : 3 Hours

PART - A

(20 x 2 = 40 Marks)

ANSWER ALL QUESTIONS

1. Two of the eigen values of $\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ are 3 and 6 . Find the eigen values of A^{-1}
2. If $A=\left[\begin{array}{ll}1 & 0 \\ 4 & 5\end{array}\right]$, express A^{3} interms of A and I using Cayley- Hamilton theorem.
3. Find the nature of the quadratic form $2 x^{2}+2 x y+3 y^{2}$
4. Show that $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$ is orthogonal.
5. Find the equation of the sphere on the join of $(2,-1,4)$ and $(-2,2,-2)$ as diameters.
6. Define a right circular cylinder.
7. Find the equation to the tangent plane to the sphere $x^{2}+y^{2}+z^{2}=9$ at $(2,2,1)$
8. Find the equation of a sphere whose centre is $(-6,1,3)$ and radius 4 units.
9. What is the radius of curvature at $(3,4)$ on the curve $x^{2}+y^{2}=25$?
10. Find the envelope of the family of straight lines $x \cos \alpha+y \sin \alpha=\rho$, where α is a

[^0]11. Write down the equation of the circle of curvature of a given curve.
12. Define evolute of a curve
13. Find the Taylor's series of x^{y} near the point $(1,1)$ upto the first degree term.
14. State Euler's theorem on homogenous function.
15. If $u=e^{x} \sin y$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
16. If $x=u(1+v)$ and $y=v(1+u)$, find $\frac{\partial(x, y)}{\partial(u, v)}$

17 Evaluate $\int_{0}^{\pi} \int_{0}^{\cos \theta} r d r d \theta$
18. Find the area of circle of radius 'a' by double integration in polar coordinates.
19. Change the order of integration of $\int_{0}^{a} \int_{y}^{a} f(x, y) d x d y$
20. Evaluate $\int_{1}^{3} \int_{3}^{4} \int_{1}^{4} x y z \mathrm{dxdyd} z$

PART-B
($5 \times 12=60$ Marks)

ANSWER ANY FIVE QUESTIONS

21. Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ to a canonical form by an orthogonal transformation
22. a) Find the centre and radius of the circle which is the intersection of the sphere $x^{2}+y^{2}+z^{2}-8 x+4 y+8 z=45$ and the plane $x-2 y+2 z=3$.
b) Find the equation to the right circular cone whose vertex is at $(2,-3,5)$ axis makes equal angles with the coordinate axes and semi vertical angle is 30°
23. a) Find the radius of curvature at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$ to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ (6)
b) Find the evolute of the parabola $y^{2}=4 a x$.24.a) Find the maximum and minimum values of $x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
b) Find the maximum value of $x^{m} y^{n} z^{p}$ when $x+y+z=a$.
24. a) Evaluate $\iint x y(x+y) d y d x$ over the area between $y=x^{2}$ and $y=x$.
b) Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} d y d x$
25. a) Find the eigen values and eigen vectors of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ and hence evaluate A^{3} also find A^{-1}
26. a) Find the equation to the sphere passing through the circle $x^{2}+y^{2}+z^{2}=9, x+y+z=1$and cuts orthogonally the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-16 z+17=0$.
b) Find the radius of curvature for $r=a(1+\cos \theta)$ at $\theta=\frac{\pi}{2}$
27. a) If $u=x^{2}-y^{2}, v=2 x y$ and $x=r \cos \theta, y=r \sin \theta$, compute $J\left(\frac{u, v}{r, \theta}\right)$
b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-\mathrm{x}^{2}}} \int_{1}^{\sqrt{1-\mathrm{x}^{2}-\mathrm{y}^{2}}} \frac{\mathrm{dxdydz}}{\sqrt{1-\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{z}^{2}}}$

[^0]: parameter.

