Reg. No. : \square

Question Paper Code : 10392

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

First Semester
Common to all branches
MA 2111/181101/MA 12/080030001 - MATHEMATICS - I

- (Regulation 2008)

Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$

1. If 3 and 6 are two eigen values of $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$, write down all the eigen values of A^{-1}.
2. Write down the quadratic form corresponding to the matrix $\left[\begin{array}{ccc}0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2\end{array}\right]$.
3. Find the equation of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y-6 z-6=0$ at $(1,2,3)$.
4. Write down the equation of the right circular cone whose vertex is at the origin, semi vertical angle is α and axis is along z -axis.
5. For the catenary $y=c \cosh \frac{x}{c}$, find the curvature.
6. Find the envelope of the family of circles $(x-\alpha)^{2}+y^{2}=r^{2}, \alpha$ being the parameter.
7. If $u=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
8. If $u=\frac{y^{2}}{2 x}, v=\frac{x^{2}+y^{2}}{2 x}$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
9. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}}\left(x^{2}+y^{2}\right) d y d x$.
10. Change the order of integration in $\int_{0}^{a} \int_{x}^{a} f(x, y) d y d x$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) If λ_{i} for $(i=1,2, \ldots, n)$ are the non-zero eigen values of A, then prove that (1) $k \lambda_{i}$ are the eigen values of $k A$, where k being a non-zero scalar; (2) $\frac{1}{\lambda_{i}}$ are the eigen values of A^{-1}.
(ii) Verify Cayley-Hamilton theorem for the matrix $\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2\end{array}\right]$ and hence find A^{-1} and A^{4}.
Or
(b) Reduce the quadratic form $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x$ to canonical form through an orthogonal transformation. Write down the transformation. (16)
12. (a) (i) Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0, x+y+z=3$ as a great circle.
(ii) Find the equation of a right circular cone generated when the straight line $2 y+3 z=6, x=0$ revolves about z-axis.

Or

(b) (i) Find the two tangent planes to the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y-6 z+5=0$, which are parallel to the plane $x+4 y+8 z=0$. Find their point of contact.
(ii) Find the equation of the right circular cylinder of radius 3 and axis $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-1}$.
13. (a) (i) Find the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta) ; y=\dot{=} a(1-\cos \theta)$.
(ii) Find the circle of curvature at $(a / 4, a / 4)$ on $\sqrt{x}+\sqrt{y}=\sqrt{a}$.

Or
(b) (i) Find the evolute of the parabola $y^{2}=4 a x$.
(ii) Find the envelope of the system of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where the parameters a and b are connected by the relation $a b=4$.
14. (a) (i) Transform the equation $z_{x x}+2 z_{x y}+z_{y y}=0$ by changing the independent variables using $u=x-y$ and $v=x+y$.
(ii) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ upto 3rd degree terms.

Or

(b) (i) Find the maximum and minimum values of $x^{2}-x y+y^{2}-2 x+y$.
(ii) A rectangular box open at the top, is to have a volume of 32 cc . Find the dimensions of the box, that requires the least material for its construction.
15. (a) (i) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate.
(ii) Transform the integral into polar coordinates and hence evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.

Or

(b) (i) Find, by double integration, the area between the two parabolas $3 y^{2}=25 x$ and $5 x^{2}=9 y$.
(ii) Find the volume of the portion of the cylinder $x^{2}+y^{2}=1$ intercepted between the plane $x=0$ and the paraboloid $x^{2}+y^{2}=4-z$.

