Reg. No. \square

Question Paper Code : 60769

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

First Semester
Civil Engineering
MA 2111/MA 12/080030001 - MATHEMATICS - I
(Common to all branches)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. The product of two eigenvalues of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16. Find the third eigenvalue.
2. Discuss the nature of the quadratic form $2 x^{2}+3 y^{2}+2 z^{2}+2 x y$.
3. Find the equation to the sphere, having the points $(-4,5,1)$ and $(4,1,7)$ as ends of a diameter.
4. Prove that $9 x^{2}+9 y^{2}-4 z^{2}+12 y z-6 z x+54 z-81=0$ represents a cone.
5. Find the radius of curvature of the curve given by $y=c \log \sec \frac{x}{c}$.
6. Find the envelope of the family of lines $y=m x+\frac{a}{m}$, where m is the parameter and a is a constant.
7. If $u=f(y-z, z-x, x-y)$, find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$.
8. If $r=\frac{y z}{x}, s=\frac{z x}{y}, t=\frac{x y}{z}$, find $\frac{\partial(r, s, t)}{\partial(x, y, z)}$.
9. Express $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$ into polar coordinates.
10. Evaluate : $\int_{0}^{2} \int_{0}^{y} \int_{0}^{x} d x d y d z$.

PART B - $(5 \times 16=80$ marks $)$
11. (a) (i) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \tag{8}\\
0 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

(ii) Verify the Cayley - Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$ and hence find A^{-1}.
Or
(b) Reduce the quadratic form $2 x^{2}+y^{2}+z^{2}+2 x y-2 x z-4 y z$ into a canonical form by an orthogonal transformation and hence find its nature.
12. (a) (i) Find the centre and radius of the circle given by $x^{2}+y^{2}+z^{2}+2 x-2 y+4 z-19=0$ and $x+2 y+2 z+7=0$.
(ii) Find the equation of the cone whose vertex is the point $(1,1,0)$ and whose base in the curve $y=0, x^{2}+z^{2}=4$.

Or

(b) (i). Find the condition that the plane $l x+m y+n z=p$ may be a tangent plane to the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$.
(ii) Find the equation of the right circular cylinder which passes through the circle $x^{2}+y^{2}+z^{2}=9, x+y+z=3$.
13. (a) (i) Find the envelope of the straight lines $\frac{x}{a}+\frac{y}{b}=1$, where the parameters are related by the equation $a^{2}+b^{2}=c^{2}$.
(ii) Find the radius of curvature at any point of the cycloid $x=\alpha(\theta+\sin \theta)$ and $y=\alpha(1-\cos \theta)$.

Or
(b) (i) Find the radius of curvature and centre of curvature of the parabola $y^{2}=4 a x$ at the point t. Also find the equation of the evolute.
(ii) Find the envelope of the circles drawn upon the radius vectors of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as diameter.
14. (a) (i) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
(ii) Find the extreme values of $f(x, y)=x y(a-x-y)$.

Or
(b) (i) Expand $e^{x} \cos y$ in powers of x, y upto the second degree terms using Taylor's theorem.
(ii) Find the greatest and least distances of the point $(3,4,12)$ from the unit sphere whose centre is at the origin.
15. (a) (i) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate it.
(ii) Find the area that lies outside the circle $r=2 \cos \theta$ and inside the circle $r=6 \cos \theta$, using double integration.

Or

(b) (i) Find the volume of the cylinder $x^{2}+y^{2}=25$ bounded by the planes $z=1$ and $x+z=10$.
(ii) Evaluate $\iint_{R} \frac{x y d x d y}{\sqrt{x^{2}+y^{2}}}$, where R is the region in the first quadrant enclosed by the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$.

