Question Paper Code : 27320

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015
 First Semester
 Mechanical Engineering
 MA 6151 : MATHEMATICS - I
 (Common to all branches except Marine Engineering)
 (Regulation : 2013)

Time : 3 Hours]
[Max. Marks : 100

$$
\begin{gathered}
\text { Answer ALL questions. } \\
\text { PART - A }(10 \times 2=20 \text { Marks })
\end{gathered}
$$

1. What are the eigenvalues of the matrix $A+3 I$ if the eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
-5 & 4
\end{array}\right] \text { are } 6 \text { and }-1 \text { ? Why? }
$$

2. Identify the nature, index and signature of the quadratic form $2 x_{1} x_{2}+2 x_{2} x_{3}+2 x_{3} x_{1}$.
3. When is a sequence said to be divergent ? Give an example.
4. State Integral test for convergence.
5. Find the curvature of $y=9 x+10$ and comment on the answer.
6. What is an envelope of a curve ?
7. Check for the continuity of the function $f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}$ when $(x, y) \neq(0,0)$ and $\mathrm{f}(x, \mathrm{y})=2$ when $(x, \mathrm{y})=(0,0)$.
8. Are the functions $u=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ and $v=\frac{2 x y}{x^{2}+y^{2}}$ functionally dependent? If dependent, find its relation.
9. Sketch the region of integration bounded by the curves $x y=2,4 y=x^{2}, y=4$.
10. For what value of $f(x, y, z)$, the triple integral $\iiint f(x, y, z) d x d y d z$ is the volume of a solid? Give reason.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Find the eigenvalues and eigenvectors of a matrix $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$
(ii) State Cayley - Hamilton theorem and using it, find the matrix represented

$$
\text { by } A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I \text { when } A=\left[\begin{array}{lll}
2 & 1 & 1 \tag{8}\\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

OR

(b) Reduce the quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}$ into canonical form by the orthogonal transformation.
12. (a) (i) Discuss the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\cdots$ using comparison test.
(ii) Use D' Alemberts ratio test to examine the convergence of the sequence

$$
\begin{equation*}
\sum \frac{\mathrm{n}^{3}+\mathrm{a}}{2^{\mathrm{n}}+\mathrm{a}} \tag{8}
\end{equation*}
$$

(b) Check for the convergence of the following alternating series :
(i) $2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\cdots$
(ii) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$
13. (a) (i) Find the centre of circle of curvature for the curve $x y(x+y)=2$ at $(1,1)$.
(ii) Find the evolute of the parabola $x^{2}=4 \mathrm{ay}$ as the envelope of normals.

OR

(b) (i) Obtain the evolute of the hyperbola $\frac{x^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$.
(ii) Find the envelope of $x \sec ^{2} \theta+y \operatorname{cosec}^{2} \theta=\mathrm{a}$, where θ is a parameter.
14. (a) (i) Expand $\sin (x y)$ in powers of $(x-1)$ and $(y-\pi / 2)$ upto second degree term, by Taylor's theorem.
(ii) A rectangular box open at the top is to have a volume of 32 cc . Find the dimensions of the box that requires the least material for its construction.

OR

(b) (i) Investigate the extreme values of the function $f(x, y)=x^{2}+x y+y^{2}+\frac{1}{x}+\frac{1}{y}$.
(ii) Find the volume of the largest rectangular solid which can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{z}^{2}}{\mathrm{c}^{2}}=1$.
15. (a) (i) Calculate the area which is inside the cardioid $r=2(1+\cos \theta)$ and outside the circle $r=2$.
(ii) Find the volume of the tetrahedron in space cut from the first octant by the plane $6 x+3 y+2 z=6$.

OR

(b) (i) Evaluate the double integral $A=\int_{1}^{4} \int_{2 / y}^{2 \sqrt{y}} d x d y$ by changing the order of integration.
(ii) Find the volume bounded by the elliptic paraboloids $z=x^{2}+9 y^{2}$ and $z=18-x^{2}-9 y^{2}$.

