Reg. No. :

Question Paper Code: 37001

B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2014.

First Semester

Civil Engineering

MA 6151 — MATHEMATICS — I

(Common to all Branches except Marine Engineering)

(Regulation 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. If the eigen values of the matrix A of order 3×3 are 2, 3 and 1, then find the eigen values of adjoint of A.
- 2. If λ is the eigen value of the matrix A, then prove that λ^2 is the eigen value of A^2 .
- 3. Give an example for conditionally convergent series.
- 4. Test the convergence of the series $1 \frac{1}{2^2} \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} \frac{1}{7^2} \frac{1}{8^2} \dots$ to ∞ .
- 5.
- What is the curvature of the circle $(x 1)^2 + (y + 2)^2 = 16$ at any point on it?

6. Find the envelope of the family of curves $y = mx + \frac{1}{m}$, where m is the parameter.

7. If
$$x^y + y^x = 1$$
, then find $\frac{dy}{dx}$

- 8. If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial(r, \theta)}{\partial(x, y)}$.
- 9. Find the area bounded by the lines x = 0, y = 1 and y = x, using double integration.

10. Evaluate
$$\int_{0}^{\pi} \int_{0}^{a} r \, dr d\theta$$
.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the eigen values and the eigen vectors of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. (8)
 - (ii) Using Cayley-Hamilton theorem find A^{-1} and A^4 , if $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}.$ (8)

Or

- (b) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4xz$ into a canonical form by an orthogonal reduction. Hence find its rank and nature. (16)
- 12. (a) (i) Examine the convergence and the divergence of the following series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots + \frac{2^n - 2}{2^n + 1}(x^{n-1}) + \dots (x > 0). \quad (8)$
 - (ii) Discuss the convergence and the divergence of the following series $\frac{1}{2^{3}} - \frac{1}{3^{3}}(1+2) + \frac{1}{4^{3}}(1+2+3) - \frac{1}{5^{3}}(1+2+3+4) + \dots \qquad (8)$ Or
 - (b) (i) Test the convergence of the series $\sum_{n=0}^{\infty} n e^{-n^2}$. (8)
 - (ii) Test the convergence of the series $\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - \frac{x^4}{1+x^4} + \dots (0 < x < 1).$ (8)

- 13. (a) (i) Find the radius of curvature of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$. (8)
 - (ii) Find the equation of the evolutes of the parabola $y^2 = 4ax$. (8)

Or

- (b) (i) Find the equation of circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x} + \sqrt{y} = \sqrt{a}$. (8)
 - (ii) Find the envelope of the family of straight lines $y = mx 2am am^3$, where m is the parameter. (8)

14. (a) (i) Expand $e^x \log(1 + y)$ in powers of x and y upto the third degree terms using Taylor's theorem. (8)

(ii) If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (8)
Or

(b) (i) Discuss the maxima and minima of $f(x, y) = x^3 y^2 (1 - x - y)$. (8)

(ii) If w = f(y - z, z - x, x - y), then show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$. (8)

15. (a)

- (i) By changing the order of integration evaluate $\int_{0}^{1} \int_{2}^{2-x} xy \, dy dx$. (8)
 - (ii) By changing to polar coordinates, evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$. (8)

Or

- (b) (i) Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$. (8)
 - (ii) Evaluate $\iiint_V \frac{dzdydx}{(x+y+z+1)^3}$, where V is the region bounded by x = 0, y = 0, z = 0 and x + y + z = 1. (8)