12. Find the critical points of the transformation $w=z^{2}$
13. Expand $\log (1+z)$ in Taylor's series about $z=0$.
14. Define Removable singularity with an example.
15. Calculate the residue of $f(z)=\frac{e^{2 z}}{(z+1)^{2}}$ at its pole.
16. Evaluate $\int_{C} \frac{Z^{2}+1}{(Z-2)(Z-3)}$ where \mathbf{c} is $|z|=1$.
17. State the necessary conditions for the existence of the Laplace transform of a function.
18. Verify Initial value theorem for $f(t)=e^{-t}$ sint
19. Find inverse laplace transform of $\log \frac{s+1}{s}$
20. Give an example of a function such that it has Laplace transform but it is not continuous..

PART B ($5 \times 12=60$ Marks)

Answer Any FIVE Questions

21.(a). Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$
(b). Find the volume of the tetrahedron bounded by the planes

$$
\mathrm{X}=0, \mathrm{Y}=0, \mathrm{Z}=0 \text { and } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 .
$$

22.(a). Verify Green's theorem for $\int_{C}\left(\left(x y+y^{2}\right) d x+x^{2} d y\right)$ where C is the boundary of the common area between $y=x^{2}$ and $y=x$.
(b). Find the constants a, b, and c so that the vector \vec{F} may be irrotational. Where $\vec{F}=\left(\mathrm{axy}+\mathrm{b} z^{3}\right) \dot{i}+\left(3 \mathrm{x}^{2}-\mathrm{cz}\right) \vec{j}+\left(3 \mathrm{x} z^{2}-\mathrm{y}\right) \vec{k}$ and for these values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ find the scalar potential of \vec{F}.
(6)
9. State any two properties of an analytic function.
10. Prove that $f(z)=z$ is nowhere analytic.
11. Check whether the function $u(x, y)=e^{x}$ siny is harmonic or not.
23.(a). Derive Cauchy - Riemann equations in cartesian coordinates
(b). If $f(z)$ is an analytic function, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
24. (a). Find the analytic function $f(z)=u+i v$ and its imaginary part v, whose real part is $\mathrm{u}=\frac{\sin 2 x}{\cos 2 x+\cosh 2 y}$
(b). Find the bilinear transformation which maps the points $0,1, \infty$ of z - plane onto the points $\mathrm{i}, 1,-1$ of w-plane.
25.(a). Evaluate using Cauchy's integral formula $\int_{c} \frac{z+1}{z^{2}+2 z+4} d z$, where c is the circle $|z+1+i|=2$
(b). Find Laurent's series expansion of $\mathrm{f}(\mathrm{z})=\frac{7 z-2}{z(z-2)(z+1)}$ in $1<|z+1|<3$
6. (a). Evaluate $\int_{c} \frac{z}{(z-1)^{2}(z+1)} d z$ using Cauchy's residue theorem, where c is the circle
(i). $|z|=\frac{1}{2}$
(ii). $|z|=2$
$(3+3)$
(b). Evaluate $\int_{0}^{2 \pi} \frac{\operatorname{Cos} 3 \theta}{5-4 \operatorname{Cos} \theta} d \theta$ by Cantour integration.
27. (a). Find (i). $\mathrm{L}\left(t^{2} e^{-t} \sin t\right)$ (ii). $\mathrm{L}\left(\frac{2 \sin 2 t \sin t}{t}\right)$
(b). Use Convolution theorem to find the Inverse Laplace Transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$
28. (a). Find the Laplace Transform of $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ll}t & 0<t<a \\ 2 a-t & a<t<2 a\end{array}\right.$ given $f(t+2 a)=f(t)$
(b). Solve the Differential Equations:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=\mathrm{e}^{\mathrm{t}}, \mathrm{x}(0)=1, \quad \mathrm{x}^{\prime}(0)=0 \tag{6}
\end{equation*}
$$

***** TNE END *****

