(8)

- b) i) Prove that the function $u = \log \sqrt{x^2 + y^2}$ is harmonic and hence find its conjugate harmonic
 - ii) Find the image of the circle |z-2i|=2 under the transformation $w=\frac{1}{z}$. (8)
- 15. a) i) Evaluate $\int_C \frac{\cos \pi z}{z^2 1} dz$ around a rectangle with vertices at $2 \pm i, -2 \pm i$. (8)
 - ii) Evaluate $\int_0^{2\pi} \frac{1}{2 + \cos\theta} d\theta$ using contour integration. (8)
 - b) i) Expand $\frac{1}{(z-1)(z-2)}$ in a Laurent series valid for
 - (i) |z| < 1, ii) 1 < |z| < 2. (8)
 - ii) Use calculus of residues to find $\int_0^\infty \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx$ where a, b > 0. (8)

|--|--|

Reg. 1	No. :	.						

Question Paper Code: 50776

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Second Semester Civil Engineering

MA 6251 - MATHEMATICS - II

(Common to Mechanical Engineering (Sandwich)/Aeronautical Engineering/
Agriculture Engineering/Automobile Engineering/Biomedical Engineering/
Computer Science and Engineering/Electrical and Electronics Engineering/
Electronics and Communication Engineering/Electronics and Instrumentation
Engineering/Environmental Engineering/Geoinformatics Engineering/Industrial
Engineering and Management/Instrumentation and Control Engineering/
Manufacturing Engineering/Materials Science and Engineering/Mechanical
Engineering/Mechanical and Automation Engineering/Mechatronics Engineering/
Medical Electronics Engineering/Petrochemical Engineering/Production
Engineering/Robotics and Automation Engineering/Biotechnology/Chemical
Engineering/Chemical and Electrochemical Engineering/Fashion Technology/Food
Technology/Handloom & Textile Technology/Information Technology/
Petrochemical Technology/Petroleum Engineering/Pharmaceutical Technology/
Plastic Technology/Polymer Technology/Textile Chemistry/Textile Technology)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

1. If
$$\vec{F} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+2kz)\vec{k}$$
 has divergence zero, find the unknown value of k. (2)

2. Evaluate the integral
$$\int_C \vec{F} \cdot d\vec{r}$$
 if $\vec{F} = xy^2 \vec{i} + (x^2 + y^2) \vec{j}$ and C is the curve given by $y = x^2 - 4$ from (2, 0) to (4, 12).

3. Evaluate
$$\frac{1}{D^2 - 6D + 9} \{3 \log 2\}$$
. (2)

50776

.2.

4. Solve $x^2y'' + 4xy' + 2y = 0$.

(2)

5. Find L[f(t)] if $f(t) = \begin{cases} e^{-t}, 0 < t < 4 \\ 0, t > 4 \end{cases}$ (2)

6. Find $f(\infty)$, if $L[f(t)] = \frac{1}{s(s+\alpha)}$. (2)

7. Examine whether $y + e^x \cos y$ is harmonic.

(2)

8. Find the image of the line x = 1 under the transformation $w = z^2$. (2)

9. Expand $\frac{z-1}{z+1}$ about z=1. The property distribution between the problem of the property of the content of the

10. Find the singular points of $f(z) = \frac{\sin z}{z}$.

PART – B

(5×16=80 Marks)

11. a) i) Prove that $\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ is a conservative field and find the scalar potential of \vec{F} .

ii) Apply Green's theorem to evaluate $\int_{C} (xy - x^2) dx + x^2 y dy$ along the closed curve C formed by y = 0, x = 1 and y = x.

(OR)

- b) i) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$ where $\vec{F} = z \vec{i} + x \vec{j} 3y^2 z \vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. (8)
 - ii) Evaluate $\iint \vec{F} \cdot \hat{n} \, dS$ using Gauss divergence theorem for $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ taken over the cube bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 1, z = 1.

-3-

50776

(8)

12. a) i) Solve $(D^3 - 5D^2 + 7D - 3)y = e^{2x} \cosh x$ where $D = \frac{d}{dx}$.

ii) Solve (D + 2) x + 3y = 0, (D + 2) $y + 3x = 2e^{2t}$ where $D = \frac{d}{dt}$. (8)

b) i) Solve $(x + 1)^2 D^2 + (x + 1) D + y = \sin 2(\log(x + 1))$ where $D = \frac{d}{dx}$. (8)

ii) Solve by method of variation of parameters $y'' - 6y' + 9y = \frac{e^{3x}}{x}$ where $D = \frac{d}{dx}$. (8)

13. a) i) Evaluate

i) $\int_0^\infty te^{-2t} t \sin 3t dt$ using Laplace transform and

ii)
$$L^{-1}\left[\cot^{-1}\left(\frac{2}{s+1}\right)\right]$$
 (8)

ii) Find $L^{-1} \left[\frac{1}{(s^2 + a^2)^2} \right]$ using convolution theorem. (8)

b) i) Find the Laplace transform of a square wave defined by

$$f(t) = \begin{cases} E, 0 < t < \frac{a}{2}, \\ -E, \frac{a}{2} < t < a, \end{cases} \text{ and } f(t) = f(t+a)$$
 (8)

ii) Using Laplace transform, solve $y'' + y' = t^2 + 2t$ when y(0) = 4, y'(0) = -2. (8)

14. a) i) Prove that $f(z) = z^n$ is analytic for all values of n and find its derivative. (8)

ii) Find the bilinear transformation which maps the points z = 1, i, -1 in to the points w = i, 0, -i. Hence find the image of |z| < 1. (8)

(OR)