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PART A — (10 x 2 = 20 marks)
1.  Find the unit normal vector to the surface x® + y? =z ét 1.1.2).
2.  Using Green’s theorem in thé plane, vﬁvnd the area of the circle &2 B 512 =a’.
3 | Find the particular integral of the equation (D* +4D+4)y=e**

dy
dx

d2
4. Solve : x? 7ot +‘7x =0

5.  State sufficient condition for the existence of Laplace transform.
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11.

12.

Find the inverse Laplace transform of

s?-3s+2

33

The real part of an analytic function f(z) is constant, prévé thati £(2) s a

constant function.

Find the critical points of the transformation w = z* + i '

Evaluate J. goe
C

22

z

= 2’ where C is the unit circle with centre as origin.
P E

z+1

Determine the residue of f(z) =——atz=1.
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PART B — (5 x 16 = 80 marks)

Find the _angle between the surfaces x”+y?+22=9 and
z=x2+y? -3 at the point (2,-1, 2). , (8
Verify Stoke’s theorem for F =(x? - yz)f+2xyf, where S is the

rectangle in the xy-plane formed by the lines x =0, x =a, y=0 and
y=b. (8

Or

Find the constants a, b, ¢ so that F = (x+2y+az)i +(bx -3y —2) ]
+(4x +cy +22)k is irrotational. For those values of a, b, ¢ find its

scalar potential. : (6)

Verify Divergence theorem for F =4xzi —y2j + yzk taken over the
cube bounded by the planesx =0, x=a, y=0, y=a,2=0,z=qa.

(10)

Solve : (D* +5D+4)y = e *sin2x +2e”. (8)
Solve the differential equation (D?* + 4) y = sec? 2x by the method of
variation of parameters. (8)

Or
2
Solve : (1+x)zi—‘z+(1+x)—dl+y = 2sin[log( + x)] . 8)
- dx? dx

Solve:(D+2)x+3y=2e2‘;3x+(D+2)y:'0. (8)
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15. (@ (@)
(i1)

Evaluate : J‘e‘t (M) dt . ' (8)
) . :

; 2

Apply convolution theorem to evaluate L™ - - 8

e {(s2 T+ 9)} &

O
(1) Find the Laplacetransform of f (¢) = te? cos3t. ®)
@ Find [ log]— +4 (5)
(s-2° )] |

Using Laplace transform, solve the differential equation
d2y dy ; ~ :
——+3—+2y=¢", y(0)=1, y'(0)=0. 6
v ke L yf) ¥'(0) (6)

H - f2) is a regular function -of 2z  prove that

@ - 5 '
—+—1lo ) =0 (8)
Show that the transformation w = : transforms in general, circles
: = :
and straight lines into circles and straight lines. 8
Or
Find the analytic function f(2)=u+1v, : given that
2u+3v=e*(cosx —siny). : (8)

Find the bilinear transformation which maps the point -1, 0, 1 of
the z-plane into the points —1,—1i, 1of the w-plane respectively. = (8)

Evaluate IMEZ—{, where C is the circle |z—2| =~1— using
=2 ‘ 2
Cauchy’s integral formula. - o)
Find the Laurent series expansion of f(2) = s valid in the
: .2 +4z+3
regions z|<1 andO<Iz+1|<2, ’ (8)

Or
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