ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

11. (a)
(i) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$
(ii) Solve: $\left(x^{2} D^{2}-4 x D+2\right) y=x \log x$.
12. (b) (i) Solve $\left(D^{2}+2 D+5\right) y=e^{-x} \tan x$ by using method of variation of parameters.
(ii) Solve the simultaneous equations: $\frac{d x}{d t}+2 x-3 y=t, \frac{d y}{d t}-3 x+2 y=e^{2 t}$
13. (a)

Verify divergence theorem for $\vec{F}=4 x \vec{i}-2 y^{2} \vec{j}+z^{2} \vec{k}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$

(OR)

12. (b) (i) Find the work done by the force
$\vec{F}=\left(2 x y+z^{3}\right) \vec{i}+x^{2} \vec{j}+3 x z^{2} \vec{k}$ when it moves a particle from $(1,-2,1)$ to $(3,1,4)$ along any path.
(ii) By applying Green's theorem that the area bounded by a simple closed
13. (a)
(i)Show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$ and also if $f(z)=u+i v$ is analytic, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$.
(ii) Show that an analytic function with constant modulus is constant.

(OR)

13.

(b) (i)If $f(z)=u+i v$ is an analytic function and $u-v=e^{x}(\cos y-\sin y)$ find $f(z)$ interms of Z
(ii) Show that, under the mapping $w=\frac{i-z}{i+z}$, the image of the circle $x^{2}+y^{2}<1$, is the entire half of the w-plane to the right of the imaginary axis.
14. (a) Evaluate $\int_{C} \frac{d \theta}{a+b \cos \theta}$ where $\mathrm{a}>|\mathrm{b}|$.

(OR)

(b) (i) obtain the Laurent's expansion for $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ which are valid in 8 $1<|z|<4$ and $|z|>4$.
(ii) Using Cauchy's integral formula, find the value of $\int_{C} \frac{z+4}{z^{2}+2 z+5} d z \quad 8$ where C is the circle $|z+1-i|=2$. - $\mid \geq$ and $\mid \geq 4$
15. (a)
(i) Find $L\left[\frac{e^{a t}-\cos 6 t}{t}\right]$ and $L\left|t \cdot e^{-t} \sin t\right|$
(ii) Using Laplace transform solve $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t} ; \quad y(0)=1, y^{\prime}(0)=0$
(OR)
15. (b) (i) Find the Laplace transform of the rectangular wave given by

$$
f(t)=\left\{\begin{array}{l}
1,0<t<b \\
-1, b<t<2 b^{\text {with }}
\end{array} f(t+2 b)=f(t)\right.
$$

(ii) State convolution theorem for Laplace transform

Find $L^{-1}\left[\frac{1}{\left(s^{2}+4\right)^{2}}\right]$ using convolution theorem.

