\square

Question Paper Code : 10394

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.
 Second Semester

Common to all branches
MA 2161/181202/MA 22/080030004 - MATHEMATICS - II
(Regulation 2008)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$

1. Transform the equation $(2 x+3)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+3) \frac{d y}{d x}-12 y=6 x$ into a differential equation with constant coefficients.
2. Find the particular integral of $(D-1)^{2} y=e^{x} \sin x$.
3. Find λ such that $\vec{F}=(3 x-2 y+z) \bar{i}+(4 x+\lambda y-z) \bar{j}+(x-y+2 z) \bar{k}$ is solenoidal.
4. State Gauss divergence theorem.
5. State the basic difference between the limit of a function of a real variable and that of a complex variable.
6. Prove that a bilinear transformation has atmost two fixed points.
7. Define singular point.
8. Find the residue of the function $f(z)=\frac{4}{z^{3}(z-2)}$ at a simple pole.
9. State the first shifting theorem on Laplace transforms.
10. Verify initial value theorem for $f(t)=1+e^{-t}(\sin t+\cos t)$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Solve $\left(D^{2}+a^{2}\right) y=\sec a x$ using the method of variation of parameters.
(ii) Solve : $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$.

Or
(b) (i) Solve the differential equation $\left(x^{2} D^{2}-x D+4\right) y=x^{2} \sin (\log x)$.
(ii) Solve the simultaneous differential equations $\frac{d x}{d t}+2 y=\sin 2 t$, $\frac{d y}{d t}-2 x=\cos 2 t$.
12. (a) (i) Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \vec{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k} \quad$ is irrotational and hence find its scalar potential.
(ii) Verify Green's theorem in a plane for $\int_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is the boundary of the region defined by $x=0, y=0$ and $x+y=1$.
(b) (i) Using Stoke's theorem, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=y^{2} \vec{i}+x^{2} \vec{j}-(x+z) \vec{k}$ and ' C ' is the boundary of the triangle with vertices at $(0,0,0),(1,0,0),(1,1,0)$.
(ii) Find the work done in moving a particle in the force field given by $\overrightarrow{\mathrm{F}}=3 x^{2} \vec{i}+(2 x z-y) \vec{j}+z \vec{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$. (8)
13. (a) (i) Prove that every analytic function $w=u+i v$ can be expressed as a function of z alone, not as a function of \bar{z}.
(ii) Find the bilinear transformation which maps the points $z=0,1, \infty$ into $w=i, 1,-i$ respectively.
Or
(b) (i) If $f(z)$ is an analytic function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log |f(z)|=0$. (8)
(ii) Show that the image of the hyperbola $x^{2}-y^{2}=1$ under the transformation $w=\frac{1}{z}$ is the lemniscate $r^{2}=\cos 2 \theta$.
 integral formula.
(ii) Evaluate $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent series valid for the regions $|z|>3$ and $1<|z|<3$.

> Or
(b) (i) Evaluate $\int_{C} \frac{z-1}{(z+1)^{2}(z-2)} d z$, where C is the circle $|z-i|=2$ using Cauchy's residue theorem.
(ii) Evaluate $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+a^{2}} d x$, using contour integration.
15. (a) (i) Apply convolution theorem to evaluate $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
(ii) Find the Laplace transform of the following triangular wave function given by $\begin{aligned} f(t)= & \left\{\begin{array}{cc}t, & 0 \leq t \leq \pi \\ 2 \pi-t, & \pi \leq t \leq 2 \pi\end{array} \text { and } f(t+2 \pi)=f(t) \text {. } \text { Or }\right.\end{aligned}$
(b) (i) Find the Laplace transform of $\frac{e^{a t}-e^{-b t}}{t}$.
(ii) Evaluate $\int_{0}^{\infty} t e^{-2 t} \cos t d t$ using Laplace transform.
(iii) Solve the differential equation $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=e^{-t}$ with $y(0)=1$ and $y^{\prime}(0)=0$, using Laplace transform.

