Reg. No.:			

Question Paper Code: 21521

18 x En

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Second Semester

Civil Engineering

MA 2161/MA 22/080030004 — MATHEMATICS — II

(Common to all branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the particular integral of $(D^2 2D + 1)y = \cosh x$.
- 2. Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0$.
- 3. Find the directional derivative of $\phi = xyz$ at (1,1,1) in the direction of $\vec{i} + \vec{j} + \vec{k}$.
- 4. If \vec{A} and \vec{B} are irrotational, prove that $\vec{A} \times \vec{B}$ is solenoidal.
- 5. Find the image of the line x = k under the transformation $w = \frac{1}{z}$.
- 6. Find the fixed points of mapping $w = \frac{6z-9}{z}$.
- 7. Evaluate $\int_C \frac{3z^2 + 7z + 1}{z + 1} dz$, where C is $|z| = \frac{1}{2}$.
- 8. Find the residue of $\frac{1-e^{2z}}{z^4}$ at z=0.
- 9. Find the Laplace transform of $\frac{t}{e^t}$.
- 10. Verify initial value theorem for the function $f(t) = ae^{-bt}$. PART B $(5 \times 16 = 80 \text{ marks})$
- 11. (a) (i) Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$ by the method of variation of parameters. (8)

(ii) Solve:
$$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$
. (8)

- (b) (i) Solve the simultaneous differential equations : $\frac{dx}{dt} + 5x 2y = t$; $\frac{dy}{dt} + 2x + y = 0$. (8)
 - (ii) Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 + \frac{1}{x^2}$. (8)

12. (a) Verify Stoke's theorem for the vector field $\vec{F} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ over the upper half surface $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy – plane. (16)

(b) Verify divergence theorem for $\vec{F} = x^2 \vec{i} + z \vec{j} + yz \vec{k}$ over the cube formed by the planes $x = \pm 1$, $y = \pm 1, z = \pm 1$. (16)

13. (a) (i) Prove that the function $u = e^x(x\cos y - y\sin y)$ satisfies Laplace's equation and find the corresponding analytic function f(z) = u + iv.

(ii) Find the Bilinear transformation which maps z = 0, z = 1, $z = \infty$ into the points w = i, w = 1, w = -i. (8)

- (b) (i) Find the image of |z-2i|=2 under the transformation $w=\frac{1}{z}$. (8)
 - (ii) If f(z) is an analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2. \tag{8}$
- 14. (a) (i) Expand the function $f(z) = \frac{z^2 1}{z^2 + 5z + 6}$ in Laurent's series for |z| > 3.

(ii) Evaluate $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$, where C is |z| = 3. (8)

- (b) (i) Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}, a > 0, b > 0$. (8)
 - (ii) Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta \text{ using contour integration.}$ (8)
- 15. (a) (i) Find $L[t^2e^{-3t}\sin 2t]$. (8)
 - (ii) Find the Laplace transform of the square-wave function (or Meoander function) of period a defined as (8)

 $f(t) = \begin{cases} 1, & \text{when } 0 < t < \frac{a}{2} \\ -1, & \text{when } \frac{a}{2} < t < a. \end{cases}$

(b) (i) Using convolution theorem find the inverse Laplace transform of $\frac{4}{(2-2)^{2}}$ (8)

2

(ii) Solve y'' + 5y' + 6y = 2 given y'(0) = 0 and y(0) = 0 using Laplace transform. (8)

(8)