Reg. No.

Question Paper Code : 57499

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 Second Semester
 Civil Engineering
 MA 6251 - MATHEMATICS - II

(Common all branches except Marine Engineering)
(Regulation 2013)

Answer ALL questions.

PART - A ($\mathbf{1 0 \times 2} \mathbf{2} \mathbf{= 2 0}$ Marks)

1. Evaluate $\nabla^{2} \log r$.
2. State Stokes' theorem.
3. Solve $\left(D^{2}+D+1\right) y=0$
4. If $1 \pm 2 \mathrm{i}, 1 \pm 2 \mathrm{i}$ are the roots of the auxiliary equation corresponding to a fourth order homogenous linear differential equation $F(D) y=0$, find its solution.
5. State convolution theorem on laplace transforms.
6. Evaluate $L^{-1}\left(\frac{s}{s^{2}+4 s+5}\right)$.
7. Give an example of a function where u and v are harmonic but $u+i v$ is not analytic.
8. Find the critical points of the map $w^{2}=(z-\alpha)(z-\beta)$.
9. Expand $f(z)=\frac{1}{z^{2}}$ as a Taylor series about the point $\mathrm{z}=2$.
10. Evaluate the residue of $f(z)=\tan z$ at its singularities.

$$
\text { PART - B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) If $\nabla \phi=2 x y z^{3} \vec{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}$ find $\phi(x, y, z)$ given that $\phi(1,-2,2)=4$.
(ii) Using Green's theorem in a plane evaluate

$$
\begin{align*}
& \int_{C}\left[x^{2}(1+y) d x+\left(x^{3}+y^{3}\right) d y\right] \text { where } C \text { is the square formed by } x= \pm 1 \text { and } \\
& y= \pm 1 \tag{8}
\end{align*}
$$

OR

(b) (i) Find ' a ' and ' b ' so that the surfaces $a x^{3}-b y^{2} z=(a+3) x^{2}$ and $4 x^{2} y-z^{3}=11$ cut orthogonally at $(2,-1,-3)$
(ii) Prove that Curl Curl $\vec{F}=\operatorname{grad} \operatorname{div} \vec{F}-\nabla^{2} \vec{F}$.
12. (a) (i) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) \mathrm{y}=x \mathrm{e}^{-x} \cos x$.
(ii) Solve the equation $\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}-2\right) \mathrm{y}=x^{2} \log x$.

OR

(b) (i) Solve the following simultaneous equations $\frac{\mathrm{d} x}{\mathrm{dt}}-\mathrm{y}=\mathrm{t} ; \frac{\mathrm{dy}}{\mathrm{dt}}+x=\mathrm{t}^{2}$.
(ii) Solve the equation $y^{\prime \prime}+y=\tan x$ using the method of variation of parameters.
13. (a) (i) Evaluate :
(1) $\mathrm{L}\left(\mathrm{t}^{2} \mathrm{e}^{-t} \cos \mathrm{t}\right)$
(2) $L^{-1}\left[e^{-2 s} \frac{1}{\left(s^{2}+s+1\right)^{2}}\right]$
(4) $+(4)$
(ii) Find the inverse Laplace transform of $\frac{s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$ using convolution theorem.

OR

(b) (i) Find the Laplace transform of $\mathrm{f}(\mathrm{t})$ defined by
$f(t)=\left\{\begin{aligned} E & \text { if } 0<t<a / 2 \\ -E & \text { if } a / 2<t<a\end{aligned}\right.$ where $f(t+a)=f(t)$.
(ii) Using Laplace transforms technique solve $\mathrm{y}^{\prime \prime}+\mathrm{y}^{\prime}=\mathrm{t}^{2}+2 \mathrm{t}$, given $\mathrm{y}=4$, $y^{\prime}=-2$ when $\mathrm{t}=0$.
14. (a) (i) If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function in $\mathrm{z}=x+$ iy then prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|u|^{2}=2\left|f^{\prime}(z)\right|^{2} \tag{8}
\end{equation*}
$$

(ii) Prove that $\mathrm{w}=\frac{\mathrm{z}}{\mathrm{z}+\mathrm{a}}$ where $\mathrm{a} \neq 0$ is analytic whereas $\mathrm{w}=\frac{\overline{\mathrm{z}}}{\overline{\mathrm{z}}+\mathrm{a}}$ is not analytic.

OR

(b) (i) Can $v=\tan ^{-1}\left(\frac{y}{x}\right)$ be the imaginary part of an analytic function? If so construct an analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{i} v$, taking v as the imaginary part and hence find u.
(ii) Find the bilinear transformation that transforms the points $z=1, i,-1$ of the z -plane into the points $\mathrm{w}=2, \mathrm{i},-2$ of the w -plane.
15. (a) (i) Evaluate using Cauchy's integral formula : $\int_{C} \frac{(z+1)}{(z-3)(z-1)} d z$ where C is the circle $|z|=2$.
(ii) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+12 \cos \theta}$ by using contour integration.
(b) (i) Expand as a Laurent's series the function $f(z)=\frac{z}{\left(z^{2}-3 z+2\right)}$ in the regions
(1) $|z|<1$
(2) $1<\mid$ z $\mid<2$
(3) $|z|>2$
(ii) Evaluate $\int_{0}^{\infty} \frac{x \sin \mathrm{~m} x}{x^{2}+\mathrm{a}^{2}} \mathrm{~d} x$ where $\mathrm{a}>0, \mathrm{~m}>0$.

