Reg. No.	0 50	modeles	ylor sen		Apro	will ipan
----------	------	---------	----------	--	------	-----------

Question Paper Code : 57499

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

MA 6251 – MATHEMATICS – II

(Common all branches except Marine Engineering)

(Regulation 2013)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

1. Evaluate $\nabla^2 \log r$.

2.

5.

6.

7.

State Stokes' theorem.

Solve $(D^2 + D + 1)y = 0$

4. If $1 \pm 2i$, $1 \pm 2i$ are the roots of the auxiliary equation corresponding to a fourth order homogenous linear differential equation F(D)y = 0, find its solution.

State convolution theorem on laplace transforms.

Evaluate $L^{-1}\left(\frac{s}{s^2+4s+5}\right)$.

Give an example of a function where u and \dot{v} are harmonic but u + iv is not analytic.

8. Find the critical points of the map $w^2 = (z - \alpha) (z - \beta)$.

1

9. Expand $f(z) = \frac{1}{z^2}$ as a Taylor series about the point z = 2.

10. Evaluate the residue of $f(z) = \tan z$ at its singularities.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) (i) If
$$\nabla \phi = 2xyz^3 \vec{i} + x^2z^3 \vec{j} + 3x^2yz^2 \vec{k}$$
 find $\phi(x, y, z)$ given that $\phi(1, -2, 2) = 4$. (8)

(ii) Using Green's theorem in a plane evaluate

 $\int_{C} [x^2 (1 + y)dx + (x^3 + y^3)dy]$ where C is the square formed by $x = \pm 1$ and $y = \pm 1$.

(8)

(8)

(8)

(8)

57499

OR

- (b) (i) Find 'a' and 'b' so that the surfaces $ax^3 by^2z = (a + 3)x^2$ and $4x^2y z^3 = 11$ cut orthogonally at (2, -1, -3) (8)
 - (ii) Prove that Curl Curl $\vec{F} = \text{grad div } \vec{F} \nabla^2 \vec{F}$.
- 12. (a) (i) Solve $(D^2 + 2D + 1)y = xe^{-x} \cos x$.
 - (ii) Solve the equation $(x^2D^2 xD 2) y = x^2 \log x$.

OR

(b) (i) Solve the following simultaneous equations $\frac{dx}{dt} - y = t; \frac{dy}{dt} + x = t^2$. (8)

(ii) Solve the equation y" + y = tan x using the method of variation of parameters.
 (8)

13. (a) (i) Evaluate :

(1) $L(t^2 e^{-t} \cos t)$

(2)
$$L^{-1}\left[e^{-2s}\frac{1}{(s^2+s+1)^2}\right]$$

2

(ii) Find the inverse Laplace transform of $\frac{s}{(s^2 + a^2)(s^2 + b^2)}$ using convolution theorem. (8)

OR

$$f(t) = \begin{cases} E & \text{if } 0 < t < a/2 \\ -E & \text{if } a/2 < t < a \end{cases} \text{ where } f(t+a) = f(t).$$
(8)

(ii) Using Laplace transforms technique solve $y'' + y' = t^2 + 2t$, given y = 4, y' = -2 when t = 0. (8)

- 14. (a) (i) If f(z) = u + iv is an analytic function in z = x + iy then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |u|^2 = 2|f'(z)|^2.$ (8)
 - (ii) Prove that $w = \frac{z}{z+a}$ where $a \neq 0$ is analytic whereas $w = \frac{\overline{z}}{\overline{z}+a}$ is not analytic. (8)

OR

- (b) (i) Can v = tan⁻¹ (^y/_x) be the imaginary part of an analytic function ? If so construct an analytic function f(z) = u + iv, taking v as the imaginary part and hence find u.
 (8)
 - (ii) Find the bilinear transformation that transforms the points z = 1, i, -1 of the z-plane into the points w = 2, i, -2 of the w-plane.
 (8)

5. (a) (i) Evaluate using Cauchy's integral formula :
$$\int_{C} \frac{(z+1)}{(z-3)(z-1)} dz$$
 where C is

the circle
$$|z| = 2$$
. (8)

(ii) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{13 + 12\cos\theta}$$
 by using contour integration. (8)

OR

57499

3

Expand as a Laurent's series the function $f(z) = \frac{z}{(z^2 - 3z + 2)}$ in the regions (b) (i)

- (1) |z| < 1
- 1 < |z| < 2(2)
- |z|>2 (3)
- (ii) Evaluate $\int_{\infty}^{\infty} \frac{x \sin mx}{x^2 + a^2} dx$ where a > 0, m > 0.

Evaluate $\int \frac{d\theta}{13 \pm 12 \cos \theta}$ by using contour integration

(8)

(8)

 $\left[\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}\right] \left[u^{22} - 2[f'(z)]^2\right]$