Reg. No.

Question Paper Code : 51771

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 Second Semester
 Civil Engineering MA 2161/MA 22/080030004-MATHEMATICS - II
 (Common to all Branches)
 (Regulations 2008)

Time : Three Hours

Answer ALL questions.

$$
\text { PART }-\mathbf{A}(10 \times 2=20 \text { Marks })
$$

1. Solve $\left(D^{2}+6 D+9\right) y=0$
2. Find the particular integral of $\left(D^{2}+4 D+8\right) y=e^{2 x}$
3. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then show that $\operatorname{grad} r=\frac{\vec{r}}{r}$
4. Find the divergence of the vector field $\vec{A}=(x y z) \hat{i}+\left(3 x^{2} y\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at the point ($2,-1,1$).
5. Define analytic function and give a suitable example:
6. Define harmonic function and give a suitable example.
7. Evaluate $\oint\left(x^{2}-y^{2}+2 i x y\right) d z$, where C is the contour $|z|=1$
8. Expand the function $\mathrm{f}(\mathrm{z})=\frac{\mathrm{e}^{\mathrm{z}}}{(\mathrm{z}-1)^{2}}$ about $\mathrm{z}=1$ in a Laurent's series.
9. If c_{1} and c_{2} are constant and f and g are functions of then show that
$\mathrm{L}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{t})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{t})\right\}=\mathrm{c}_{1} \mathrm{~L}\{\mathrm{f}(\mathrm{t})\}+\mathrm{c}_{2} \mathrm{~L}\{\mathrm{~g}(\mathrm{t})\}$
10. If $L\{F(t)\}=\frac{1}{p(p+\beta)}$ where ' β ' is a constant, then find $\lim _{t \rightarrow \infty} F(t)$.

PART - B ($5 \times 16=80$ Marks)
11. (a) (i) Solve $\left(\mathrm{D}^{2}+7 \mathrm{D}+12\right) \mathrm{y}=14 \mathrm{e}^{-3 x}$
(ii) Solve $\left(x^{2} \mathrm{D}^{2}+4 x \mathrm{D}+2\right) \mathrm{y}=x \log x$

OR
(b) (i) Solve $\left(D^{2}+5 D+6\right) y=4 \cos 5 x$
(ii) Solve $\frac{\mathrm{dx}}{\mathrm{dt}}+2 x-3 y=t, \frac{\mathrm{dy}}{\mathrm{dt}}-3 x+2 \mathrm{y}=\mathrm{e}^{2 \mathrm{t}}$
12. (a) (i) Show that the vector field $\overrightarrow{\mathrm{A}}=\left(x^{2}+x y^{2}\right) \hat{\mathrm{i}}+\left(y^{2}+x^{2} y\right) \hat{\mathrm{j}}$ is irrotational and find the scalar potential.
(ii) Using Green's theorem show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \int(x \mathrm{dy}-\mathrm{yd} x)$. Hence find the area of an ellipse.

OR

(b) Verify Gauss Divergence theorem for $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by the cylinder $x^{2}+y^{2}=4, z=0$ and $z=3$.
13. (a) (i) Show that (i) an analytic function with constant real part is a constant and (ii) an analytic function with constant modulus is also a constant.
(ii) If $f(z)$ is a regular function of z then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) (i) Show that $v(x, y)=\log \left(x^{2}+y^{2}\right)$ is a harmonic function. Find a function $u(x, y)$ such that $\mathrm{f}(\mathrm{z})=\mathrm{u}(x, y)+\mathrm{iv}(x, y)$ is an analytic function.
(ii) Find the image of the circle $|z-1|=1$ in the complex plane under the mapping $w=\frac{1}{z}$.
14. (a) (i) Evaluate $\oint_{C}\left(\frac{z^{2}+1}{z^{2}-1}\right) d z$ where C is a circle
(1) $|z|=3 / 2$
(2) $|z|=1 / 2$.
(ii) Expand
(1) $f(z)=\frac{\sin z}{z-\pi}$ about $z=\pi$ and
(2) $f(z)=\frac{z}{(z+1)(z+2)}$ about $\mathrm{z}=-2$.

OR

(b) (i) Using contour integration prove that $\int_{\left(1+x^{2}\right)^{2}}^{+\infty} \frac{\mathrm{d} x}{(1)}$
(ii) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$, using contour integration.
15. (a) (i) Find Laplace transform of $F(t)=\left(1+t \mathrm{e}^{-2 t}\right)^{3}$.
(ii) Find the Inverse Laplace transform of $f(p)=\frac{p^{2}+2 p-3}{p(p-3)(p+2)}$

OR

(b) (i) Find Laplace transform of $F(t)=\frac{1-\cos t}{t^{2}}$
(ii) State convolution theorem and hence evaluate $L^{-1}\left\{\frac{p}{\left(p^{2}+1\right)\left(p^{2}+4\right)}\right\}$

