\square

Question Paper Code : 51569

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Second Semester

Civil Engineering
MA 2161/MA 22/080030004 - MATHEMATICS - II
(Common to all branches)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Solve $\left(D^{4}-2 D^{2}+1\right) y=0$.
2. Guess the trial solution of the particular integral for the differential equation $y^{\prime \prime}+4 y=\cos 2 x$ using method of undetermined coefficients.
3. Find the directional derivative of $\phi=x^{2}+y^{2}+z^{2}$ at the point $(1,1,1)$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
4. If $\bar{F}=\bar{\nabla} \phi$, then find $\int_{A}^{B} \bar{F} \cdot d \bar{r}$.
5. Verify whether or not $f(z)=e^{x}(\cos y-i \sin y)$ is analytic.
6. Find the image of $|z-10 i|=2$ under the mapping $w=z+1+i$.
7. Evaluate $\int_{C} \frac{5 z^{2}+30 z+100}{(z-2)} d z$, where C is the circle $|z-2|=4$.
8. Identify and classify the singularity of the function $f(z)=e^{1 / z}$.
9. Find the Laplace transform of $f(t)=t \cosh t$.
10. Find the inverse Laplace transform of $\frac{e^{-\pi s}}{(s-1)^{2}}$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Using method of variation of parameters solve the following differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=(1+x) e^{2 x}$.
(ii) Solve $\left(x^{2} D^{2}-3 x D+4\right) y=x[\log x]^{2}$.
(b) (i) Solve $(x+1)^{2} y^{\prime \prime}+(x+1) y^{\prime}+y=2 \sin [\log (1+x)]$.
(ii) Solve the following differential equation by method of undetermined coefficients $y^{\prime \prime}+y=4 e^{x}+10 \sin x$.
12. (a) (i) Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is the boundary of the common area between $y=x^{2}$ and $y=x$.
(ii) Verify Stoke's theorem for the vector field $\bar{F}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$ where S is the surface of upper hemisphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary in $x y$-plane.
(b) (i) Verify Gauss divergence theorem for the vector function $\bar{F}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$, over the cubic region bounded by $x=0, x=a$, $y=0, y=a, z=0$ and $z=a$.
(ii) Verify that $\bar{F}=y^{2} \hat{i}+2 x y \hat{j}+2 z \hat{k}$ is irrotational, further find also its corresponding scalar potential.
13. (a) (i) Find the analytic function $f(z)=u(x, y)+i v(x, y)$ given that $u-v=e^{x}(\cos y-\sin y)$.
(ii) Find the image of the region bounded by, the lines $x=0, y=0$ and $x+y=1$ under the mappings $w=e^{i \pi / 4} z$ and $w=z+(2+3 i)$.

Or
(b) (i) Find the image of the circle $|z-3 i|=3$ and the region $1<x<2$ under the map $w=1 / z$.
(ii) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $\hat{w}=0,1, \infty$ respectively. Find also the pre-image of $|w|=1$ under this bilinear transformation.
14. (a) (i) If $f(a)=\int_{C} \frac{13 z^{2}+27 z+15}{z-a} d z$ where C is $|z|=2$, then find $f(3)$, $f^{\prime}(1-i), f^{\prime \prime}(1-i)$ and $f(1-i)$.
(ii) Using Contour integration on unit circle, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{(5+4 \cos \theta)}$.

Or
(b) (i) Using Contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x$.
(ii) Find the Laurent's series expansion of $f(z)=\frac{7 z-2}{(z-2)(z+1)}$ valid in the regions $|z+1|<1$ and $|z+1|>3$.
15. (a) (i) Solve $y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}, y(0)=2, y^{\prime}(0)=6$ by Laplace transform method.
(ii) Using convolution theorem find the inverse Laplace transform of $\frac{s}{\left(s^{2}+1\right)^{2}}$.

> Or
(b) (i) Verify initial and final value theorems for the function $f(t)=1+e^{-t}(\sin t+\cos t)$.
(ii) Find the Laplace transform of the periodic function defined on the interval $0 \leq t \leq 1$ by $f(t)=\left\{\begin{array}{ll}-1, & 0 \leq t<1 / 2 \\ 1, & 1 / 2 \leq t<1\end{array}\right.$ and $f(t+1)=f(t)$.

