ANNA UNIVERSITY COIMBATORE B.E. / B.Tech. DEGREE EXAMINATION – DECEMBER 2008

THIRD SEMESTER

(Common to EEE / ECE / EIE / ICE / MECHATRONICS / TEXTILE TECH(FT) / TEXTILE TECH. / MEDICAL ELECTRONICS)

SM 302 - ENGINEERING MATHEMATICS - III

Time: Three Hours

)

Maximum: 100 Marks

PART A – (20 x 2 = 40 Marks) Answer ALL Questions

1) Write down the Dirichlet's condition for a function to be expanded as a Fourier series.

- 2) Define the value of the Fourier series of f(x) at a point of discontinuity.
- 3) If $f(x) = \sin hx$ is defined in $-\pi < x < \pi$, write the values of Fourier

coefficients a_0 and a_n .

4) If $x = 2\left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + ...\right]$ in $0 < x < \pi$, Prove that $\sum \frac{1}{n^2} = \frac{\pi^2}{6}$.

5) Prove that if $F\{f(x)\} = F(s)$, then $F\{f(x-a)\} = e^{isa} F(s)$

6) Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1, & \text{if } a < x < b \\ 0, & \text{otherwise} \end{cases}$.

7) Find the Fourier Cosine transform of. $f(x) = \begin{cases} x , & 0 < x < \pi \\ 0 , & x \ge \pi \end{cases}$

8) If
$$F\{f(x)\} = F(s)$$
, prove that $F\{x^2 \ f(x)\} = -\frac{d^2}{ds^2}F(s)$

9) State Initial and Final value theorem on Z - transform.

10) Find the Z – transform of (n+1)

11) Prove that $Z^{-1}\left[\frac{z^2}{(z-a)^2}\right] = (n+1)a^n$

- 12) Find the difference equation from $y(n) = (A + nB)2^n$.
- 13) Form the partial differential equation by eliminating the arbitrary constants

'a' and 'b' from $z = a x^3 + b y^3$.

- 14) Find the Singular solution of $z = px + qy + p^2 + q^2 + 1$.
- 15) Find the general solution of px + qy = z
- 16) Find the particular integral of $(D^2-4DD')z = e^{3x+4y}$
- 17) Classify the p.d.e $(1+x^2)(4+x^2)u_{xx} + (5+2x^2)u_{xy} + u_{yy} = 0$
- Write any two assumptions made while deriving the partial differential equation of transverse vibrations of a string.
- 19) Define steady state. Write the one dimensional heat equation in steady state.

2

20) Write all the solutions of Laplace equation in Cartesian form, using the method of separation of variables

Answer Any FIVE Questions

21) a) Find the Fourier series expansion for
$$f(x) = x^2$$
 in $(-\pi, \pi)$ and hence show
that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{2^4} + \dots \infty = \frac{\pi^4}{90}$
(8)

b) Obtain the half range cosine series for $f(x) = (x - 2)^2$ in the interval (0, 2) (4)

22) Find the Fourier transform of
$$f(x) = \begin{bmatrix} 1 - |x| \text{ for } |x| \le 1 \\ 0 \text{ otherwise} \end{bmatrix}$$

Hence find the values of (i)
$$\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 and (ii)
$$\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$$
 (12)

23) a) Using convolution theorem evaluate the inverse Z-transform of $\overline{(z-1)(z-3)}$. (6)

b) Find the inverse Z- transform of
$$\frac{z}{(z-1)^2(z-2)}$$
. (6)

b) Using Z-transforms, solve
$$y(n+2) + 3y(n+1) - 4y(n) = 0$$
, $n \ge 1$, given that
 $y(0) = 3$ and $y(1) = -2$. (8)

25) a) Obtain the complete solution of the equation $z = px + qy - 2\sqrt{pq}$ b) Solve ($D^2 + DD^2 - 6D^2$) $z = \cos(2x+y)$ 26) a) Solve xz p + yz q = xy.

(6)

(6)

(6)

(6)

(12)

(12)

b) Solve $(2D^2 - 5DD' + 2D'^2) z = e^{2x+y}$

- 27) A tightly stretched flexible string has its ends fixed at x = 0 and x = l. At time t = 0, the string is given a shape defined by f(x) = k x (l x), where k is a constant, and then released from rest. Find the displacement of any point x of the string at any time t.
- 28) An infinitely long rectangular plate with insulated surfaces is 10cm wide. The two long edges and one short edge are kept at zero temperature, while the other short edge x = 0 is kept at temperature given by

$$u = \begin{bmatrix} 20 \ y \ for \ 0 \le y \le 5\\ 20 (10 - y) \ for \ 5 \le y \le 10 \end{bmatrix}$$

Find the steady state temperature at any point in the plate.

*******THE END*******

3