ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009 REGULATIONS : 2007

THIRD SEMESTER
070030004 - ENGINEERING MATHEMATICS III
(COMMON TO CIVIL / AERONAUTICAL / CSE / IT)

Max.Marks : 100

PART - A

$(20 \times 2=40$ MARKS

ANSWER ALL QUESTIONS

Form the PDE from $Z=f(2 x-6 y)$
Find the complete integral of $q=2 p x$
Solve $\left(D^{3}-3 D D^{\prime 2}+2 D^{\prime 3}\right) z=0$
Find the complete solution of $Z=p x+q y+p^{2}+q^{2}$
State Dirichlet's conditions for Fourier series
Find the sum of the Fourier series for $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}x, & 0<x<1 \\ 2, & 1<x<2\end{array}\right.$ at $\mathrm{x}=1$
If the Fourier series for $f(x)=\left\{\begin{array}{l}0,0<x<\pi \\ \sin x, \pi<x<2 \pi\end{array}\right.$ is
11
1212.

A string is stretched and fastened to two points I apart. Motion is started by displacing the string into the form $y=y_{0} \sin \frac{\pi x}{l}$ from which it is released at time $t=0$. Formulate this problem as the boundary value problem.
Write any two solutions of the Laplace equation $u_{x x}+u_{y y}=0$
State one dimensional heat equation with the initial and boundary conditions.
Define Fourier transform Pair
State the convolution Theorem for Fourier Transform.
Find Fourier Cosine Transform of e^{-x}
State Parseval's identity in Fourier Transform.
Prove that $z\left[a^{n}\right]=\frac{z}{z-a}$ is $|z|>|a|$
Find Z - Transform of $a^{n} n^{3}$
Find $Z\left[\frac{a^{n}}{n!}\right]$ in Z-Transform
Find the Z - Transform of $(n+1)(n+2)$

PART - B
$(5 \times 12=60 \mathrm{MARKS})$

ANSWER ANY FIVE QUESTIONS

21. (a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
(b) Solve $\frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=8 \sin (x+3 y)$

Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π to be valid in the interval 0 to 2π. Hence deduce the value of series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots
$$

(a) Find the Fourier sine series for $y=x$ in $0<x<1$. Hence show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ by using Parseval's identity
(b) Find the F.S of $f(x)$ from the table given below upto the third harmonic

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
$f(x)$	1.0	1.21	1.27	1.3	1.27	1.21	1.0

A string is stretched and fastened to two points ' 1 ' apart . Motion is started by displaying the string into the form $k\left(1 x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance x from one end at time t.

A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. It's faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x)$, when $0<x<20$, while the other three edges are kept at 0 ' c Find the steady state temperature of the plate

Find the Fourier sine \& cosine transform $e^{-a x}, a>0$. Hence deduce that
(6)
(6)

$$
\int_{0}^{x} \frac{\cos m x}{a^{2}+x^{2}} d x \text { and } \int_{0}^{x} \frac{x \sin m x}{a^{2}+x^{2}} d x
$$

Prove that $Z\left[\frac{1}{n+1}\right]=Z \log \frac{Z}{Z-1}$
(b) Solve $y_{n+1}-2 y_{n}=1, y=0$
. *****THE END*****
${ }^{*}$

Show that the transform of $e^{x^{2} / 2}$ is $e^{s^{2} / 2}$ by finding the Fourier transform of $e^{-a^{2} x^{2}}$,$a>0$.

