ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS: MAY / JUNE 2010

REGULATIONS: 2007

THIRD SEMESTER

070030004 - ENGINEERING MATHEMATICS III

(COMMON TO CSE / IT / CIVIL / AERONAUTICAL ENGG.)

TIME: 3 Hours

511.

Max. Marks:100

PART - A

 $(20 \times 2 = 40 \text{ MARKS})$

ANSWER ALL QUESTIONS

Form the PDE by eliminating the arbitrary constants 'a' and 'b'

from z = (x+a)(y+b).

- Find the complete integral of the partial differential equation $z = px+qy+p^2+q^2$
- Find the P.I of $(D^2 + 2DD' + D'^2)z = e^{x-y}$.

Form the PDE by eliminating the arbitrary function from $\phi\left(z^2 - xy, \frac{x}{z}\right) = 0$.

- State the Parseval's formula for a function y = f(x) in the interval $(-\pi, \pi)$.
 - Find the constant a_0 of the Fourier series for the function f(x)=k, $0 < x < 2\pi$.
- Find the R.M.S value of the function f(x)=x in (0,l).
- If f(x) is an odd function defined in (-1, 1) what are the values of a_0 and a_n .
- Write down the suitable solution of one dimensional wave equation? Why?.
- In the diffusion equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, what does α^2 stand for?
- An insulated rod of length I = 60 cm has its ends at A and B maintained at 30° C and 40° C respectively. Find the steady state solution.
- Write down the possible solutions of the Laplace equation.

- State the modulation theorem.
- Write the Fourier sine transform pair.
- 15. Find the Fourier cosine transform of e^{-ax} , a>0.
- 16. State Fourier Integral theorem.
- 17. Find $z^{-1} \left[\frac{z}{(z-1)(z-2)} \right]$, using partial fraction method.
- 18. Prove that $z(n) = \frac{z}{(z-1)^2}$
- 19. Solve $y_{n+1} 2y_n = 0$ given $y_0 = 2$.
- 20. State the initial and final value theorem in z-transform.

PART - B

 $(5 \times 12 = 60 \text{ MARKS})$

ANSWER ANY FIVE QUESTIONS

21. a) Solve
$$(mz - ny) p + (nx - lz) q = ly - mx$$

b) Solve
$$(D^2 + 4DD' - 5D'^2)z = 3e^{2x-y} + \sin(x-2y)$$

22. a) Obtain the half range cosine series of $f(x)=(x-1)^2$ in $0 \le x \le 1$.

b) Expand f (x) in a Fourier series upto 2nd harmonic using the following table

X	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

- A tightly stretched string with fixed end points x = 0 and x = l initially in a position given by $y(x,0) = \frac{\pi x}{l}$ If it is released from rest from this position, find the displacement y at any time and at any distance from the end x = 0.
- Find the Fourier Transforms for the function $f(x)=1-x^2$, $|x| \le 1$ = 0 , |x| > 1Hence evaluate (i) $\int_{0}^{\infty} \frac{\sin s s \cos s}{s^3} \cos \frac{s}{2} ds \quad \text{(ii)} \int_{0}^{\infty} \frac{(x \cos x \sin x)^2}{x^6} dx$
- 25. a) Solve the difference equation $y(n+2)-3y(n+1)+2y(n)=2^n$, given that y(0)=0, y(1)=0
 - b) Find the inverse Z Transform of $\frac{8z^2}{(2z-1)(4z+1)}$
- 26. A rod of length 20 cm has its ends A and B kept at $30^{\circ}c$ and $90^{\circ}c$ respectively until steady state conditions prevail. If the temperature at each end is then suddenly reduced to $0^{\circ}c$ and maintained so, find the temperature u (x, t) at a distance x from A at time 't'.

27. a) Solve $z = px + qy + p^2 - q^2$

6

6

- Obtain the Fourier series expansion of $f(x) = \begin{cases} 1, 0 < x < \pi \\ 2, \pi < x < 2\pi \end{cases}$
- 28. a) Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{x^{2}}{(a^{2} + x^{2})} dx, a > 0$
 - Find the inverse Z Transform by using convolution theorem $\frac{z^2}{(z-a)^2}$.

*****THE END****

6

6

6

1