ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010

REGULATIONS : 2007
THIRD SEMESTER
070030004 - ENGINEERING MATHEMATICS III (COMMON TO CSE / IT / CIVIL / AERONAUTICAL ENGG.)

Max. Marks :100
PART - A
$(20 \times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

Form the PDE by eliminating the arbitrary constants ' a ' and ' b '
from $z=(x+a)(y+b)$
Find the complete integral of the partial differential equation $z=p x+q y+p^{2}+q^{2}$ Find the P.I of $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=e^{x-y}$

Form the PDE by eliminating the arbitrary function from $\phi\left(z^{2}-x y, \frac{x}{z}\right)=0$.
State the Parseval's formula for a function $y=f(x)$ in the interval $(-\pi, \pi)$.
Find the constant a_{0} of the Fourier series for the function $f(x)=k, 0<x<2 \pi$.
Find the R.M.S value of the function $f(x)=x$ in $(0, l)$.
If $f(x)$ is an odd function defined in $(-1,1)$ what are the values of a_{0} and a_{n}

Write down the suitable solution of one dimensional wave equation? Why?.
In the diffusion equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$, what does α^{2} stand for?
An insulated rod of length $l=60 \mathrm{~cm}$ has its ends at A and B maintained at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Find the steady state solution.
Write down the possible solutions of the Laplace equation.

State the modulation theorem.
Write the Fourier sine transform pair.
Find the Fourier cosine transform of $e^{-a x}, a>0$
State Fourier Integral theorem.
Find $z^{-1}\left[\frac{z}{(z-1)(z-2)}\right]$, using partial fraction method.
Prove that $z(n)=\frac{z}{(z-1)^{2}}$
Solve $y_{n+1}-2 y_{n}=0$ given $y_{0}=2$.
State the initial and final value theorem in z-transform.
PART - B
$(5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

a) Solve $(m z-n y) p+(n x-l z) q=l y-m x$
b) Solve $\left(D^{2}+4 D D^{\prime}-5 D^{\prime 2}\right) z=3 e^{2 x-y}+\sin (x-2 y)$
a) Obtain the half range cosine series of $f(x)=(x-1)^{2}$ in $0 \leq x \leq 1$.
b) Expand $f(x)$ in a Fourier series upto $2^{\text {nd }}$ harmonic using the following table

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

23. A tightly stretched string with fixed end points $\mathrm{x}=0$ and $x=l$ initially in a position given by $y(x, 0)=\sin ^{3} \frac{\pi x}{2}$ If it is released from rest from this position, find the displacement y at any time and at any distance from the end $\mathrm{x}=0$.
24. Find the Fourier Transforms for the function $f(x)=1-x^{2},|x| \leq 1$

$$
=0 \quad,|x|>1
$$

Hence evaluate (i) $\int_{0}^{\infty} \frac{\sin s-s \cos s}{s^{3}} \cos \frac{s}{2} d s \quad$ (ii) $\int_{0}^{\infty} \frac{(x \cos x-\sin x)^{2}}{x^{6}} d x$
25. a) Solve the difference equation $y(n+2)-3 y(n+1)+2 y(n)=2^{n}$, given that $y(0)=0, y(1)=0$
b)

Find the inverse Z - Transform of $\frac{8 z^{2}}{(2 z-1)(4 z+1)}$

A rod of length 20 cm has its ends A and B kept at $30^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If the temperature at each end is then suddenly reduced to $0^{\circ} \mathrm{c}$ and maintained so, find the temperature $u(x, t)$ at a distance x from A at time ' t '.
27. a) Solve $z=p x+q y+p^{2}-q^{2}$
b)

Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{l}1,0<x<\pi \\ 2, \pi<x<2 \pi\end{array}\right.$
28. a)

Using Parseval's identity, evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(a^{2}+x^{2}\right)} d x, a>0$
b)

Find the inverse $Z-T r a n s f o r m$ by using convolution theorem $\frac{z^{2}}{(z-a)^{2}}$.
*****THE END*****

