ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : SEPTEMBER 2009

REGULATIONS - 2007
 THIRD SEMESTER

070030008 - ENGINEERING MATHEMATICS III
(COMMON TO MECHATRONICS / EEE / ECE / MEDICAL ELECTRONICS / ICE / EIE / FASHION / TEXTILE TECH. / TEXTILE CHEMISTRY)

TIME: 3 Hours
Max. Marks: 100
PART - A

ANSWER ALL QUESTIONS

$(20 \times 2=40 \mathrm{MARKS})$

1. Find the constant term in the Fourier series corresponding to $f(x)=\cos ^{2} x$ expressed in the interval $(-\pi, \pi)$
2. State Parseval's theorem on Fourier series
3. State the Dirichlet's conditions for the existence of Fourier series for $f(x)$
4. Define root mean square of $f(x)$ over the range (a, b)

Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x| \leq 1 \\ 0,|x|>1\end{array}\right.$
State convolution theorem on Fourier transform
Give a function which is self reciprocal with respect to Fourier sine transform State Fourier Integral theorem

Find $Z\left(a^{n}\right)$.
State the initial value theorem
Find the z - transform of $\frac{1}{n(n+1)}$
12. Form the difference equation from the relation $y n=A(2)^{n}+B(3)^{n}$

Form the PDE by eliminating $\mathrm{a} \& \mathrm{~b}$ from $z=a(x+y)+b$
Solve $\sqrt{p}+\sqrt{q}=x+y$
Solve $\left(D^{2}+3 D D^{1}+2 D^{1^{2}}\right) z=0$
Solve $\left(D-D^{1}\right)\left(D+2 D^{1}+1\right) z=0$
Classify the following Partial differential equations
(i) $\quad u_{x x}=u_{y y}$
(ii) $u_{x y}=u_{x} u_{y}+x y$

What is the constant a^{2} in the wave equation $u_{t t}=a^{2} u_{x x}$
Write the steady state heat flow equation in two dimension in Cartesian.
An insulated rod of length 60 cm has it ends A and B maintained at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. Find the steady state solution of the rod.

PART - B

ANSWER ANY FIVE QUESTIONS

Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π in the interval
$(0,2 \pi)$ and hence deduce the value of the series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+$
22. b) Obtain the sine series for $f(x)=x$ in $0<x<\pi$ and hence deduce that 6 $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$
23. a) Find the Fourier Transform of the function $f(x)$ is defined by
$f(x)= \begin{cases}1-x^{2} & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{cases}$
b) Hence prove that $\int_{0}^{\infty}\left(\frac{\sin s-s \cos s}{s^{3}}\right) \cos \frac{s}{2} d s=\frac{3 \pi}{16}$
24. a)

Find Fourier Sine Transform of $e^{-a x}, a>0$
b)

Using convolution theorem evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
25. a) State and prove Final value theorem in z-transforms
b) Find the Z-Transform of $\frac{2 n+3}{(n+1)(n+2)}$

Using Z - Transforms, solve $y_{n}+3 y_{n-1}=4 y_{n-2}=0, \quad n \geq 2$, given $y_{0}=3$, $y_{1}=2$.
27. a) Solve: $\left(x^{2}+y^{2}+y z\right) p+\left(x^{2}+y^{2}-x z\right) q=z(x+y)$
b) Find Singular Integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$

A uniform string is stretched and fastened to two points ' ℓ ' apart. Motion is started by displacing the string into the form of the curve $y=k x(\ell-x)$ and then released from this position at time $t=0$. Find the displacement of the point of the string at a distance x from one end at time.

*****THE END*****

