Question Paper Code : 21771

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Second Semester
Civil Engineering
MA 2161/MA 22/080030004 - MATHEMATICS - II
(Common to all Branches)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Transform $\left(x^{2} D^{2}-3 x D+2\right) y=\sin (2 \log x)$ into an ordinary differential equation with constant coefficient.
2. Find a differential equation of $x(t)$ given $\frac{d y}{d t}+x=\cos t ; \frac{d x}{d t}+y=e^{-t}$.
3. Prove that $\nabla r^{n}=n r^{n-2} \vec{r}$
4. Using Green's theorem in a plane show that the area enclosed by a simple closed curve C is $\frac{1}{2} \int_{C} x d y-y d x$.
5. Prove that a real part of an analytic function is a harmonic function.
6. Find the invariant points of $w=\frac{z}{z^{2}-2}$.
7. Evaluate $\int_{C} \frac{e^{3 z}}{z(z-1)} d z$ where C is the circle $|z-3|=1$.
8. Define essential singularity and give example.
9. What is meant by exponentially ordered function?
10. Evaluate $\int_{0}^{\infty} \frac{1-e^{-t}}{t} d t$ by using Laplace Transform.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Solve: $\frac{d^{2} y}{d x^{2}}-11 \frac{d y}{d x}+18 y=e^{+2 x}+e^{-x} \cos x+x$.
(ii) Solve: $\frac{d x}{d t}+2 x-3 y=t ; \frac{d y}{d t}-3 x+2 y=e^{2 t}$.

Or
(b) (i) Solve $\frac{d^{2} y}{d x^{2}}+4 y=\cot 2 x$ by using variation of parameters.
(ii) Solve $(7+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(7+2 x) \frac{d y}{d x}+8 y=6 x$.
12. (a) (i) Find the angle between the surfaces $x^{2}-y^{2}-z^{2}=11$ and $x y+y z+z x-18=0$ at the point $(6,4,3)$.
(ii) Verify Gauss Divergence Theorem for $\vec{F}=y \vec{i}+x \vec{j}+z^{2} \vec{k}$ for the cylindrical region S given by $x^{2}+y^{2}=a^{2}, z=0$ and $z=h$.

Or
(b) (i) Prove that $\vec{F}=\left(6 x y+z^{3}\right) \vec{i}+\left(3 x^{2}-z\right) \vec{j}+\left(3 x z^{2}-y\right) \vec{k}$ is a conservative field hence find the scalar potential of \vec{F}.
(ii) Verify Stoke's theorem for $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}+2 x y \vec{j}$ over the box bounded by the planes $x=0, x=a, y=0, y=b, z=0, z=c$ if the face $z=0$ is cut.
13. (a) (i) If $u(x, y)$ and $v(x, y)$ are harmonic functions in a region R , prove that $\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ is analytic.
(ii) Find the bilinear transformation which transform the points $z=0,1, \infty$ into $w=i,-1,-i$ respectively.

Or
(b) (i) If $f(z)=u+i v$ is analytic, find $f(z)$ given that $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$
(ii) Under the transformation $w=\frac{1}{z}$ determine the region in w-plane of the infinite strip bounded by $\frac{1}{4} \leq y \leq \frac{1}{2}$.
14. (a) (i) Evaluate $\int_{C} \frac{e^{2} d z}{z(1-z)^{3}}$ if C is $|z|=2$, by using Cauchy's integral formula.
(ii) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}$.

> Or
(b) (i) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent's series valid in $1<|z|<3$ and also $0<|z+1|<2$.
(ii) By using Cauchy's residue theorem evaluate $\int_{C} \frac{\sin \pi z+\cos \pi z}{(z+2)(z+1)^{2}} d z$ where C is $|z|=3$.
15. (a) (i) Find the Laplace transform of $f(t)=\left\{\begin{array}{cc}t, & 0<t<a \\ 2 a-t, & a<t<2 a\end{array}\right.$ and $f(t+2 a)=f(t)$.
(ii) Find the inverse Laplace transform of $\frac{s e^{-s}}{s^{2}+4}$.
(iii) Solve $y^{\prime \prime}+2 y^{\prime}+y=t e^{-t}, y(0)=1, y^{\prime}(0)=-2$.

Or
(b) (i) Define unit impulse function and also find its Laplace transform. (6)
(ii) Using convolution theorem find inverse Laplace transform of $\frac{s^{2}+s}{\left(s^{2}+4\right)\left(s^{2}+2 s+10\right)}$.

