D 074

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2003.

Third Semester

MA 231 - MATHEMATICS - III

(Common to All Branches)

Time : Three hours
Maximum : 100 marks
Answer ALL the questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

(10)

Find the complete integral of $p+q=p q$ where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
(11)
2. Solve $\left(D^{3}-3 D D^{\prime 2}+2 D^{\prime 3}\right) z=0$.
(12)

If $f(x)=x^{2}+x$ is expressed as a Fourier series in the interval $(-2,2)$, to which value this series converges at $x=2$?
(14)

If the Fourier series corresponding to $f(x)=x$ in the interval $(0,2 \pi)$ is $\frac{a_{0}}{2}+\sum_{1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}$, without finding the values of $a_{0}, a_{n} ; b_{n}$ find the value of $\frac{a_{0}^{2}}{2}+\sum_{1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$.
5. Classify the following second order partial differential equations :
(a) $4 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}-6 \frac{\partial u}{\partial x}-8 \frac{\partial u}{\partial y}-16 u=0$
(b) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}$.
6. Write any two solutions of the Laplace equation obtained by the method of separation of variables.
7. ')btain the Laplace transform of $\sin 2 t-2 t \cos 2 t$ in the simpliferd form.
8. Find $L^{-1}\left[\frac{1}{2} \log _{e}\left(\frac{s+a}{s-a}\right)\right]$.
9. If $F(s)$ is the Fourier transform of $f(x)$, write the formula for the Fouri transform of $f(x) \cos (a x)$ in terms of F.
10. State the convolution theorem for Fourier transforms.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (i) Prove that the Laplace transform of the triangular wave of period 2 defined by

$$
\begin{array}{rlrl}
f(t) & =t, & & 0 \leq t \leq \pi \\
& =2 \pi-t, & \pi \leq t \leq 2 \pi
\end{array}
$$

$$
\text { is } \frac{1}{s^{2}} \tan h\left(\frac{\pi s}{2}\right)
$$

(ii) Solve using Laplace transforms:

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=t \rho^{-t}, y(0)=0 . y^{\prime}(0)=-1
$$

12. (a) (i) Solve : $z=1^{\prime}+p^{2}+q^{2}$.
(ii) Solve : $(y-z) p-(2 x+y) q=2 x+z$.

> Or
(b) (i) Form the partial differential equation by eliminating the arbitrar functions f and g in $z=x^{2} f(y)+y^{2} g(x)$.
(ii) Solve : $\left(D^{2}-D D^{\prime}-20 D^{\prime 2}\right) z=e^{5 x+y}+\sin (4 x-y)$.
13. (a) (i) Obtain the Fourier series for ' $f(x)=1+x+x^{2}$ in $(-\pi, \pi)$. Dedud that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \cdots \infty=\frac{\pi^{2}}{6}$.
(ii) Obtain the constant term and the first harmonic in the Fouri series expansion for $f(x)$ where $f(x)$ is given in the following table

$x:$	0	1	2	3	4	5	6	7	8	9	10	11
$f(x):$	18.0	18.7	17.6	15.0	11.6	8.3	6.0	5.3	6.4	9.0	12.4	15.7

(b) (i) Expand the function $f(x)=x \sin x$ as a Fourier series in the interval $-\pi \leq x \leq \pi$.
(ii) Obtain the half range cosine series for $f^{\prime}(x)=(x-2)^{2}$ in the interval $0<x<2$. Deduce that $\sum_{1}^{\infty} \frac{.}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.
14. (a) A tightly stretched flexible string has its ends fired at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $f(x)=k x^{2}(l-x)$, where k is a constant, and then released from rest. Find the displacement of any point x of the string at any time $t>0$.

Or

(b) The ends A and $B{ }^{\prime \prime}$ of a rod $l \mathrm{~cm}$ long have the temperatures $40^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ until steady state prevails. The temperature at A is suddenly raised to $90^{\circ} \mathrm{C}$ and at the same time that at B is lowered to $40^{\circ} \mathrm{C}$. Find the temperature distribution in the rod at time t. Also show that the temperature at the mid point of the rod remains unaltered for all time, regardless of the material of the rod.
1.5. (a) (i) Find the Fourier transform of $e^{-a|x|}$ if $a>0$. Deduce that $\int_{3}^{\pi} \frac{1}{\left(x^{2} \cdot a^{2}\right)^{2}} d x=\frac{\pi}{4 a^{3}}$ if $a>0$.
(ii) Find the Fourier sine transform of $x e^{-x^{2} / 2}$.

> Or
(b) (i) Find the Fourier cosine transform of

$$
\begin{aligned}
f(x) & =1-x^{2}, 0<x<1 \\
& =0, \text { otherwise } .
\end{aligned}
$$

$$
\text { Hence prove that } \int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} \cos \left(\frac{x}{2}\right) d x=\frac{3 \pi}{16}
$$

(11) Derive the Parseval's identity for Fourier transforms.

