Third Semester

MA 231 - MATHEMATTCS - - JII

(Common to all branches excent Bio-Medical Engineering, Civil Engineering and Computer based construction, Fashion technology, Indusurial Bio-technology and Textile Chemistry)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART' A - ($10 \times 2=20$ marks $)$

1. Eliminate the arbitrary function f from $z=f\left(\frac{x y}{z}\right)$ and form the partial differential equation.
2. Find the complete integral of $p+q=p q$.
3. Find a Fourier sine series for the function $f(x)=1 ; 0<x<\pi$.
4. If the Fourier series for the function

$$
\begin{aligned}
f(x) & =0 ; 0<x<\pi \\
& =\sin x ; \pi<x<2 \pi
\end{aligned}
$$

is $f(x)=-\frac{1}{\pi}+\frac{2}{\pi}\left[\frac{\cos 2 x}{1 \cdot 3}+\frac{\cos 4 x}{3 \cdot 5}+\frac{\cos 6 x}{5 \cdot 7}+\ldots\right]+\frac{1}{2} \sin x:$
deduce that $\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\ldots \infty=\frac{\pi-2}{4}$.
5. Classify the partial differential equation $u_{x x}+x u_{y y}=0$.
6. A rod 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Find the steady state temperature in the rod.
7. Does Laplace transform of $\frac{\cos a t}{t}$ exist? Justify.
8. Find the inverse Laplace transform of $\frac{1}{s(s-a)}$.
9. Solve the integral equation $\int_{0}^{\infty} f(x) \cos \lambda x d x=e^{-\lambda}$.
10. Find the Fourier transform of $f(x)$ if

$$
\begin{aligned}
& \quad f(x)=\left\{\begin{array}{c}
1 ;|x|<a \\
0 ;|x|>a>0
\end{array}\right. \\
& \text { PART B }-(5 \times 16=80 \text { marks })
\end{aligned}
$$

11. (i). Solve $x(y-z) p+y(z-x) q=z(x-y)$
(ii) Solve $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (x+2 y)+e^{2 x+y}$.
12. (a) (i) Determine the Fourier expansion of $f(x)=x$ in the interva
$-\pi<x<\pi$.
(ii) Find the half range cosine series for $x \sin x$ in $(0, \pi)$.
Or
(b) (i) Obtain the Fourier series for the function

$$
\begin{aligned}
f(x) & =\pi x ; 0 \leq x \leq 1 \\
& =\pi(2-x) ; 1 \leq x \leq 2
\end{aligned}
$$

(ii) Find the Fourier series of period 2π for the function

$$
f(x)=\left\{\begin{array}{lc}
1 & \text { in }(0, \pi) \\
2 & \text { in }(\pi, 2 \pi)
\end{array}\right.
$$

$\Rightarrow \quad$ and hence find the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \infty$.
13. (a) A string is stret ?hed between two fixed poi ats at a distance $2 l$ apart and the points of the string are given iritial yelucities v where

$$
\begin{aligned}
v & =\frac{c x}{l} \text { in } 0<x<l \\
& =\frac{c}{l}(2 l-x) \text { in } l<x<2 l
\end{aligned}
$$

x being the distance from one end point. Find the displacement of the string at any subsequent time.
Or
(b) Find the solution of the one dimensional diffusion equation satisfying the boundary conditions:
(i) u is bounded as $t \rightarrow \infty$
(ii) $\left[\frac{\partial u}{\partial x}\right]_{x=0}=0$ for all t
(iii) $\left[\frac{\partial u}{\partial x}\right]_{x=a}=0$ for all t
(iv) $u(x, 0)=x(a-x), 0<x<a$.
14. (a) (i) Find the Laplace transform of $t^{2} e^{2 t} \cos 2 t$.
(ii) Find the Laplace transform of $f(t)$ if

$$
f(t)=e^{t}, 0<t<2 \pi \text { and } f(t)=f(t+2 \pi) .
$$

Or
(b) (i) Using convolution theorem find the inverse Laplace transform of $\frac{1}{\left(s^{2}+a^{2}\right)^{2}}$.
(ii) Using Lorlace transform solve $\frac{d y}{d t}-3 y=e^{2 t}$ subject to $y(0)=1$.
15. (a) (i) Show that the Fourier transform of

$$
f(x)=\left\{\begin{array}{cc}
a^{2}-x^{2} ; & |x|<a \\
0 ; & |x|>a>0
\end{array}\right.
$$

is

$$
2 \cdot \sqrt{\frac{2}{i}}\left(\frac{\sin \lambda a-\lambda a \cos \lambda a}{\lambda^{3}}\right)
$$

Hence deduce $\int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4}$.
(ii) Find the Fourier sine and cosine transform of

$$
f(x)=\left\{\begin{array}{cc}
x ; & 0<x<1 \\
2-x ; & 1<x<2 \\
0 ; & x>2
\end{array}\right.
$$

Or
(b) (i) If $\bar{f}(\lambda)$ is the Fourier transform of $f(x)$, find the Fourier transform
of $f(x-a)$ and $f(a x)$.
(ii). Verify Parseval's theorem of Fourier transform for the tunction

$$
f(x)=\left\{\begin{array}{cc}
0 ; & x<0 \\
e^{-x} ; & x>0
\end{array}\right.
$$

