J 1278

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2006.

$$
\begin{gathered}
\text { Third Semester } \\
\text { MA } 231 \text { - MATHEMA }{ }_{4}^{m r} C \text { C III. }
\end{gathered}
$$

(Common to all branches except Biomedical Engineering, Civil Engineering and
Computer Based Construct:ons, J'ashion Technology, Inciustrial Bio-Technology,
Textile Chemistry)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$

1. Form partial differential equation by eliminating the arbitrary function from $z=f(x y)$.
2. Write down the complete solution of $z=p x+q y+c \sqrt{1+p^{2}+q^{2}}$.
3. Find a_{n} in expanding e^{-x} as Fourier series in $(-\pi, \pi)$.
4. State Parseval's Identity of Fourier series.
5. A tightly stretched strine of length 2 L is fastened at both ends. The mid point of the string is displaced to a distance ' b ' and relea'ed from rest in this position. Write the Initial Conditions.
6. In one dimensional heat equation $\psi_{i}=\alpha^{2} u_{x x}$. What does α^{2} stands for?
7. State initial and final value theorems.
8. Define convolution and convolution theorem of Laplace transforms.
9. If $F\{f(x)\}=\bar{f}(s)$ then give the value of $F\{f(a x)\}$.
10. Find Fourier transform of $\begin{aligned} f(x) & =1 \\ =0 & |x| \leq 1 \\ & |x|>1 .\end{aligned}$

$$
\text { SANT B }-(5 \times 16=80 \text { marks })
$$

11. (i) Solve $(x-2 z)_{p} p+(2 z-y) q=y-x$
(ii) Solve $\left\{D^{2}+4 D D-j D^{2 i} ; z=\sin (2 x+3 y)\right.$.
12. (a) (i) Expand $f(x)=x^{2}-x$ as Fourier series in $(-\pi, \pi)$.
(ii) Find Half Range cosine series given

$$
\begin{aligned}
f(x) & =x & & 0 \leq x \leq 1 \\
& =2-x & & 1 \leq x \leq 2
\end{aligned}
$$

Or

(b) Find the Fourier series of period 2π, as far as second harmonic given.

$$
\begin{array}{llllllll}
x^{\circ}: & 0^{\circ} & 30^{\circ} & 60^{\circ} & 90^{\circ} & 120^{\circ} & 150^{\circ} & 180^{\circ} \\
y: & 2.54 & 3.01 & 3.69 & 4.15 & 3.69 & 2.2 & 0.83 \\
x^{\circ}: & 210 & 240^{\circ} & 27.0^{\circ} & 500 & 330^{\circ} & 260^{\circ} & \\
y: & 0.51 & 0.08 & 1.09 & 1.10 & 1.64 & 2.34 &
\end{array}
$$

13. (a), An elastic string of length $2 l$ fixed at both ends is disturbed from it position at equilibrium position by imparting to each point an initia velocity of magnitude $k\left(2 l x-x^{2}\right)$. Find the displacement function $y(x, t)$

Or
(b) An infinitely long plate in the form of an area is enclosed between the lines $y=0 \quad y=\pi$ for positive values of x. The temperature is zero along the edges $y=0 \quad y=\pi$ and the edge at infinity. If the edge $x=0$ is kept at temperature K_{y} find the steady-state temperature distribution in the plate.
14. (a) (i) Find $L\left\{e^{-t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$.

$$
\text { (ii) Find } L^{-1}\left\{\frac{s}{\left.\left(s^{2}+1\right)\left(s^{2}+4\right)\right)\left(s^{2}+9\right)}\right\} \text {. }
$$

(b) (i) Using convolution theorem $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$
(ii) Solve $\frac{d y}{d t}+x=\cos t$

$$
\frac{d x}{d t}+y=\sin t \quad x(0)=2 \quad y(0)=0
$$

15. (a) (i) Find Fourier transform of $e^{-a^{2} x^{2}}$. Hence prove $e^{-\frac{x^{2}}{2}}$ is self reciprocal.
(ii) Find Fourier Sine and Cosine transform of x^{n-1}.

Or
(b) (i) Using Parseval's Identity for Fore cosine transform of $e^{-a x}$ evaluate $\int_{0}^{\infty} \frac{d x}{\left.i^{n}+x^{2}\right)^{2}}$.
(ii) Find Fi urier Sine transform of $e^{-a x}(a>0)$. Hence find $F_{s}\left\{x e^{-a x}\right\}$.
\qquad -

