E 148

13 F.'IB.'Tech. DFGRLE EXAMINATION, NOVEMBER/DECEMBER 2003.

$$
\text { MA } 231 \text { - MATHEMATICS - III }
$$

Common to All branches except Bio-Medical Engineering, ('wal Enginevong and Computer Based Construction, Fashion Technology, Industrial Bio-Technology and Textile Chemistry

Time : Three hours
Maximum : 100 marks

Answer ALL questions.

PART A - $(10 \times 2=20$ marks $)$
(1)

Obtain part: ! differential equation by eliminating arbitrary constants a and b from $\left(x-a \cdot(y-b)^{2}+z^{2}=1\right.$.

2
Find the general solution of $4 \frac{\partial^{2} z}{\partial x^{2}}-12 \frac{\partial^{2} z}{\partial x}+9 \frac{\partial^{2} z}{\partial y^{2}}=0$.
3. State Dirichlet's conditions for a given function to expand in Fourier series. If the Fourier series of the function $f(x)=x+x^{2}$ in the interval $-\pi<x<\pi$ is

$$
\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n}\left[\frac{4}{n^{2}} \cos n x-\frac{2}{n} \sin n x\right]
$$

then find the value of the infinite series $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots$.
5. Classify the following partial differential equations
(a) $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}+2 u_{x}-3 u=0$
(b) $y^{2} u_{x x}+u_{y y}+u_{x}^{2}+u_{y}^{2}+7=0$.
6. An insulated rod of length 60 cm as its ends at A and B maintained at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. Find the steady state solution of the rod.
7. If $L[f(t)]=F(s)$, then show that $L[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)$.
8. State the convolution theorem for Laplace Transforms.
9. If $F(s)$ is the Fourier transform of $f(x)$, then find the Fourier transform of $f(x-a)$.
10. If $F_{s}(s)$ is the Fourier sine transform of $f(x)$, show that

$$
F_{s}[f(x) \cos a x]=\frac{1}{2}\left[F_{s}(s+a)+F_{s}(s-a)\right]
$$

PART B $-(5 \times 16=80$ marks $)$
11. Obtain Fourier series for $f(x)$ of period $2 l$ and defined as follows

$$
\begin{aligned}
f(x) & =l-x & & \text { in } 0<x \leq l \\
& =0 & & \text { in } l \leq x \leq 2 l
\end{aligned}
$$

Hence deduce that

$$
\begin{aligned}
& 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4} \\
& \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}
\end{aligned}
$$

12. (a) (i) Find the singular integral of the partial differential equation

$$
z=p x+q y+p^{2}-q^{2}
$$

(ii) Solve : $\left(D^{2}+4 D D^{\prime}-5 D^{\prime 2}\right) z=3 e^{2 x-y}+\sin (x-2 y)$.
b. (i) Find the general solution of

$$
\begin{equation*}
(3 z-4 y) p+(4 x-2 z) q=2 y-3 x \tag{10}
\end{equation*}
$$

(ii) Solve : $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}-3 D+3 D^{\prime}+2\right) z=\left(e^{3 x}+2 e^{-2 y}\right)^{2}$.
13. (a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it is set vibrating by giving each point a velocity $k x(l-x)$. Find the displacement of the string at any time.

Or

(b) A rectangular plate with insulated surface is 10 cm wide so long compared to its width that it may be considered infinite length. If the temperature along short edge $y=0$ is given $u(x, 0)=8 \sin \frac{\pi x}{10}$ when $0<x<10$, while the two long edges $x=0$ and $x=10$ as well as the other short edge are kept at $0^{\circ} \mathrm{C}$, find the steady state temperature function $u(x, y)$.
14. (a) (i) Find the Laplace transform of $t e^{2 t} \sin 3 t$.
(ii) Find the inverse Laplace transform of the following function using convolution theorem

$$
\begin{equation*}
\frac{1}{s^{3}(s+5)} \tag{6}
\end{equation*}
$$

(iii) Verify the initial value theorem for the function $1 \pm e^{-2 t}$.

Or

(b) Solve the system by using Laplace transform

$$
\begin{align*}
& 3 \frac{d x}{d t}+\frac{d y}{d t}+2 x=1 \\
& \frac{d x}{d t}+4 \frac{d y}{d t}+3 y=0 \tag{16}
\end{align*}
$$

given that $x=0$ and $y=0$ when $t=0$.
15. (a) Find the Fourier transform of $f(x)$ given by

$$
\begin{aligned}
& \qquad \begin{aligned}
f(x) & =1 \text { for }|x|<2 \\
& =0 \text { for }|x|>2
\end{aligned} \\
& \text { and hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} d x \text { and } \int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x .
\end{aligned}
$$

Or
(b) Find Fourier sine and cosine transform of e^{-x} and hence find the Fourier sine transform of $\frac{x}{1+x^{2}}$ and Fourier cosine transform of $\frac{1}{1+x^{2}}$.

