A 381

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2005.

Third Semester
Civil Engineering
MA 231 - MATHEMATICS - III

(Common to all branches Except Bio-Medical, Civil Engineering \& Computer Based Construction, Fashion Technology, Industrial Bio-Technology and Textile Chemistry)

Time : Three hours
Maximum : 100 marks

Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Find the partial differential equation of all planes passing throught the origin.
2. Find the particular integral of $\left.\left.\left.\left(D^{3}-3 D\right)^{2} D\right)^{\prime}-4 D D^{\prime 2}+12 D\right)^{\prime 3}\right) z=\sin (x+2 y)$.
3. Does $f(x)=$ tam x possess a Fourier expansion? ..
4. State Parseval's Theorem on Fourier series.
5. In the diffusion equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ what does α^{2} stand for?
6. Write the steady state heat flow equation in two dimension in Cartesian and Polar form.
7. Find the Laplace transform of $\frac{1}{\sqrt{t}}$.
8. Find the Laplace transform of a periodic functions $f(t)=e^{t}$ with period K.
9. Find the Fourier transform of $e^{-\alpha|x|}, \alpha>0$.
10. State convolution theorem on Fourier transforms.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (i) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2} & \text { for }|x| \leq 1 \\ 0 & \text { for }|x|>1 .\end{array}\right.$ Hend evaluate $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right)^{2} d x$.
(ii) Fird the Fourier ecsine tiansform of $e^{-a^{2} x^{2}}$. Hence svaluate the Fourie sine transform 0. $x e^{-a^{2} x^{2}}$.
12. (a) (i) Solve $(x+y) z p+(x-y) z y=x^{2}+y^{2}$.
(ii) Solve $\left(D^{2}+D^{\prime 4}+2 \nu D^{\prime}+2 D+2 D^{\prime}+1\right) z=c^{2 x+y}$.

Or
(b) (i) Solve $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$.
(ii) Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x} \frac{\partial y}{}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x$.
13. (a) (i) Obtain a liourier expansion for $\sqrt{1} \cos x$ in $-\pi<x<\pi$.
(ii) Obtain the cosine series for $f(x)=x$ in $0<x<\pi$ and deduce that

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{(2 n-1)^{4}}=\frac{\pi^{4}}{96} . \tag{8}
\end{equation*}
$$

Or

(b) (i) Find the Fourier series for the function:

$$
f(x)= \begin{cases}x & \text { in } 0<x<1 \tag{8}\\ 1-x & \text { in } 1<x<2 .\end{cases}
$$

Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \infty=\frac{\pi^{2}}{8}$.
(ii) Find the first fundamental harmonic of the Fourier series of $f(x)$ given by the following table:

x	0	1	2	3	4	5
$f(x)$	9	18	24	28	26	20

14. (a) A taut string of length l has its ends $x=0$ and $x=l$ fixed. The mid point is taken to a small height h and released from rest at time $t=0$. Find the displacement $y(x, t)$,

Or

(b) Find the steady state temperature distribution in a rectangular plate of sides $"$ and b insulated at the lateral surface and satisfying the boundary conditions $u(0, y)=u(a, y)=0$ for $0 \leq y \leq b u(x, b)=0$ and $u(x, 0)=x(u-x)$ for $0 \leq x \leq a$.
15. (a) (i) Find the inverse Laplace transforms of
(1) $\log \left(\frac{s+1}{s-1}\right)$
(2) $\frac{1}{\left(s^{2}+4\right)^{2}}$.
(ii) Solve the following simultaneous equations by using Laplace transforms:
$\frac{d x}{d t}-y=e^{t}$
$\frac{d y}{d t}+x=\sin t$, given that $x(0)=1, y(0)=0$.
Or
(b) (i) Find the Laplace transform of:
(1) $t^{2} e^{23} \cos t$
(2) $\frac{e^{c t}-e^{b}}{t}$.
(ii) Use Laplace transform method to solve:
$\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x}$ with $y=2$,
$\frac{d y}{d x}=-1$ at $x=0$.

