(OR)

- b) i) Solve the boundary value problem x y'' + y = 0 with the boundary conditions y(1) = 1 and y(2) = 2, taking h = 1/4 by finite difference method. (8)
 - ii) Solve $u_t = u_{xx}$ in 0 < x < 4, t > 0, given that u(0, t) = 0, u(4, t) = 0, u(x, 0) = x (4 x). Compute u up to t = 4 with $\Delta x = \Delta t = 1$.

Reg. 1	No.	:							
6	10.	.[-						

Question Paper Code : 50785

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Fourth Semester

Electrical and Electronics Engineering MA 6459: NUMERICAL METHODS

(Common to Aeronautical Engineering/Agriculture Engineering/Civil Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Geoinformatics Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical and Automation Engineering/Petrochemical Engineering/Production Engineering/Chemical Engineering/Chemical Engineering/Chemical Engineering/Petrochemical Engineering/Handloom and Textile Technology/Petrochemical Technology/Plastic Technology/Polymer Technology/Textile Chemistry/Textile Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Write down the order of convergence of Newton-Raphson method.
- 2. State the rate convergence of Gauss Jacobi method and Gauss Seidel method.
- 3. What is the nature of n^{th} divided differences of a polynomial of n^{th} degree ?
- 4. Distinguish between interpolation and extrapolation.
- 5. Write the formula for the derivative to compute at $\frac{dy}{dx}$ at the point $x = x_0$ by using

Newton's forward difference formula.

6. What is two-point Gaussian quadrature formula? For what class of functions f (x) does it given exact answers.

(8)

- 7. State the modified Euler formula to find $y(x_1)$ for solving $\frac{dy}{dx} = f(x, y)$, $Y(x_0) = y_0$.
- 8. How many prior values are required in predictor-corrector formulae?
- 9. Write down the diagonal five point formula to solve the Laplace's Equation $\nabla^2 \mathbf{u}(\mathbf{x}, \mathbf{y}) = 0$
- 10. Write down the explicit formula to solve the hyperbolic equation $u_{tt} = 9u_{xx}$ when $\Delta x = 0.25$ and $\Delta t = 1/16$.

- 11. a) i) Find the smallest positive root of $x^3 2x 5 = 0$ by the fixed point iteration method, correct to three decimal places.
 - ii) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -2 & 2 \end{bmatrix}$ by Gauss-Jordan method.

- b) i) Solve the following system of equations by Gauss-Seidel method, correct to three decimal places: 28x + 4y - z = 32; x + 3y + 10z = 24 and 2x + 17y + 4z = 35. **(8)**
 - ii) Find, by power method, the largest eigenvalue and the corresponding
 - $\begin{vmatrix} 1 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix}$ starting with initial vector $X^{(0)} = (1\ 0\ 0)^{T}$.
- 12. a) i) Find the interpolation polynomial f (x) by Lagrange's formula and hence find f (3) for (0, 2), (1, 3) (2, 12) and (5, 147).
 - ii) Find the interpolation polynomial f(x) by using Newton's forward difference interpolation formula and hence find the value of f(5) for
 - f(x): 1
 - b) Find the cubic spline approximation for the function given below.
 - $\mathbf{x}: 0$ 244 f(x):1(16)Assume that M(0) = 0 = M(3). Hence find the value of f(2.5).

50785

(8)

(16)

13. a) i) Find the first and second derivatives of y with respect to x at x = 10 from the following data:

following data:

$$x: 3 \quad 5 \quad 7 \quad 9 \quad 11$$

 $y: 31 \quad 43 \quad 57 \quad 41 \quad 27$
(8)

ii) Evaluate $\iint f(x,y) dx dy$ by Trapezoidal rule for the following data, correct

to three decimal places:

х У	0	0.5	1	1.5	2	,
0	2	3	4	5	5	
1	3	4	6	9	11	
2	4	6	8	11	14	

(OR)

b) i) The following data give the corresponding values for pressure (p) and specific volume (v) of a superheated steam. Find the rate of change of pressure with respect to volume when v = 2.

respect to volume when
$$v = 2$$
.
v: 2 4 6 8 10
p: 105 42.7 25.3 16.7 13.0 (8)

- dx correct to three decimal ii) Using Simpson's one-third rule, evaluate (8) places by step-size = 0.1.
- 14. a) Given $dy/dx = xy + y^2$, y(0) = 1, y(0.1) = 1.1169 and y(0.2) = 1.2773, find
 - i) y(0.3) by R-K method of fourth order and
 - ii) y (0.4) by Milne's method.

- b) i) Use Taylor series method to find y at x = 0.1, given $dy/dx = x^2 y$, y(0) = 1, (8) correct to 4 decimal places.
 - ii) Using Adam's method, find y(0.4), given dy/dx = (xy)/2, y(0) = 1, (8) y(0.1) = 1.01, y(0.2) = 1.002 and y(0.3) = 1.023.