Reg. No. : \square

Question Paper Code : 60776

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016

Fourth Semester
Civil Engineering

MA 2264/MA 41/MA 1251/080280026/10177 MA 401/10144 CSE 21/ 10144 ECE 15 - NUMERICAL METHODS
(Common to Sixth Semester - Electronics and Communication Engineering, Computer Science and Engineering, Industrial Engineering, Information Technology
and Fifth Semester - Polymer Technology, Chemical Engineering, Polymer
Technology and Fourth Semester - Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering, Mechatronics Engineering)
(Regulations 2008/2010)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. What is the condition for the convergence of the iteration method for solving $x=\phi(x)$?
2. Find the iterative formula to find \sqrt{N}, where N is a positive integer.
3. A third degree polynomial passes through $(0,-1),(1,1),(2,1)$ and $(3,-2)$, find its value at $x=4$.
4. Find the divided differences of $f(x)=x^{3}+x+2$ for the arguments $1,3,6,11$.
5. A curve passes through $(0,1),(0.25,0.9412),(0.5,0.8),(0.75,0.64)$ and ($1,0.5$). Find the area between the curve, x-axis, $x=0$ and 1 by Trapeziodal rule.
6. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ dividing the range into 4 equal parts by Simpson's one third rule.
7. By Taylor series with first two non-zero terms find $y(1.1)$ given that $y^{\prime}=x+y, y(1)=0$.
8. Using Euler's method find $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$.
9. Classify the equation: $U_{x x}+2 U_{x y}+4 U_{y y}=0$.
10. State the explicit scheme to solve one dimensional wave equation.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Solve the system of equations $x+2 y+z=8,2 x+3 y+4 z=20$, $4 x+3 y+2 z=16$ using Gauss elimination method.
(ii) Find all the eigenvalues and eigenvectors of the following matrix (8)

$$
A=\left[\begin{array}{ccc}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{array}\right]
$$

Or

(b) (i) Solve the system of equations by Gauss-Seidel iterative method. (8) $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$.
(ii) Find the inverse of $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$ by Gauss-Jordan method.
12. (a) (i) Given :
$\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192, \sin 60^{\circ}=0.8660$.
Find $\sin 52^{\circ}$ by Newton's interpolation formula.
(ii) Fit a Cubic spline curve that passes through $(0,1),(1,4),(2,0)$ and $(3,2)$ with the natural end boundary conditions $s^{\prime \prime}(0)=0, s^{\prime \prime}(3)=0$.

Or
(b) (i) Given the values

$$
\begin{array}{lccccc}
x: & 5 & 7 & 11 & 13 & 17 \\
f(x): & 150 & 392 & 1452 & 2366 & 5202 \tag{8}
\end{array}
$$

Evaluate $f(9)$ using Lagrange's formula.
(ii) The values of y are consecutive terms of a series of which 23.6 is the $6^{\text {th }}$ term. Find the first and tenth terms of the series :

$$
\begin{array}{lccccccc}
x: & 3 & 4 & 5 & 6 & 7 & 8 & 9 \tag{8}\\
y: & 4.8 & 8.4 & 14.5 & 23.6 & 36.2 & 52.8 & 73.9
\end{array}
$$

13. (a) (i) Using Romberg's method, evaluate $I=\int_{0}^{1} \frac{d x}{1+x}$, correct to 3 decimal places. Evaluate $\log _{e} 2$.
(ii) Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sqrt{\sin (x+y)} d x d y$ by using Trapezoidal rule.

Or

(b) (i) From the following table, obtain the value of $\frac{d^{2} y}{d x^{2}}$ at $x=0.96$.

$$
\begin{array}{lccccc}
x: & 0.96 & 0.98 & 1.00 & 1.02 & 1.04 \tag{8}\\
f(x): & 0.7825 & 0.7739 & 0.7651 & 0.7563 & 0.7473
\end{array}
$$

(ii) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ using Gauss three point formula.
14. (a) Solve $y^{\prime \prime}-x y^{\prime}+y^{2}=0$ using Runge-Kutta method for $x=0.2$ correct to 4 decimal places. The given conditions are $y(0)=1 ; y^{\prime}(0)=0$.

Or
(b) Use Taylor's series method to solve $\frac{d y}{d x}=x y+y^{2}, y(0)=1$ at $x=0.1,0.2$ and 0.3 and continue the solution at $x=0.4$ by Milne's method.
15. (a) Solve $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0$ $x=3, y=3$ with $u=0$ on the boundary and mesh length 1 unit.

$$
\begin{equation*}
\mathrm{Or} \tag{16}
\end{equation*}
$$

(b) Using Crank-Nicholson method, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to $u(x, 0)=0$, $u(0, t)=0$ and $u(1, t)=t$,
(i) Taking $h=0.5$ and $k=1 / 8$ and
(ii) Taking $h=0.25$ and $k=1 / 8$, for one time step in each case.

