\square

Question Paper Code : 22290

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Sixth Semester

Computer Science and Engineering
MA 2264/MA 51/MA 1251/10177 MA 401/10144 CSE 21 - NUMERICAL METHODS
(Common to Information Technology)
(Regulations 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. What do you mean by the order of convergence of an iterative method for finding the root of the equation $f(x)=0$?
2. Solve the equations $x+2 y=1$ and $3 x-2 y=7$ by Gauss-Elimination method.
3. State Newton's forward interpolation formula.
4. Using Lagrange's formula, find the polynomial to the given data.

$$
\begin{array}{llll}
\mathrm{X}: & 0 & 1 & 3 \\
\mathrm{Y}: & 5 & 6 & 50
\end{array}
$$

5. State the local error term in Simpson's $\frac{1}{3}$ rule.
6. State Romberg's integration formula to find the value of $I=\int_{a}^{b} f(x) d x$ for first two intervals.
7. State the advantages and disadvantages of the Taylor's series method.
8. State the Milne's predictor and corrector formulae.
9. State Crank-Nicholson's difference scheme.
10. Write down Bender-Schmidt's difference scheme in general form and using suitable value of λ, write the scheme in simplified form.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the numerically largest eigens value of $A=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ and its corresponding eigen vector by power method, taking the initial eigen vector as $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ (upto three decimal places).
(ii) Using Gauss-Jordan method, find the inverse of $\left[\begin{array}{ccc}2 & 2 & 6 \\ 2 & 6 & -6 \\ 4 & -8 & 8\end{array}\right]$

Or

(b) (i) Solve the system of equations by Gauss-Jordan method : $5 x_{1}-x_{2}=9 ;-x_{1}+5 x_{2}-x_{3}=4 ;-x_{2}+5 x_{3}=-6$.
(ii) Using Gauss-Seidel method, solve the following system of linear equations $4 x+2 y+z=14 ; x+5 y-z=10 ; x+y+8 z=20$.
12. (a) (i) Using Newton's divided difference formula, find $f(x)$ from the following data and hence find $f(4)$.

$$
\begin{array}{ccccc}
x: & 0 & 1 & 2 & 5 \tag{8}\\
f(x): & 2 & 3 & 12 & 147
\end{array}
$$

(ii) Find the value of y when $x=5$ using Newton's interpolation formula from the following table :

$$
\begin{array}{lllll}
x: & 4 & 6 & 8 & 10 \tag{8}\\
y: & 1 & 3 & 8 & 16
\end{array}
$$

Or
(b) (i) Use Lagrange's method to find $\log _{10} 656$, given that $\log _{10} 654=2.8156, \quad \log _{10} 658=2.8182, \log _{10} 659=2.8189$ and $\log _{10} 661=2.8202$.
(ii) Obtain the cubic spline for the following data to find $y(0.5)$.

$$
\begin{array}{lllll}
x: & -1 & 0 & 1 & 2 \\
y: & -1 & 1 & 3 & 35
\end{array}
$$

13. (a) (i) Find the first three derivatives of $f(x)$ at $x=1.5$ by using Newton's forward interpolation formula to the data given below.

$$
\begin{array}{ccccccc}
x: & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \tag{8}\\
y: & 3.375 & 7 & 13.625 & 24 & 38.875 & 59
\end{array}
$$

(ii) Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{1}{\left(1+x^{2}\right)} d x$ by taking eight equal intervals.

Or
(b) (i) Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+1}{1+(x+1)^{2}} d x$ by Gaussian three point formula.
(ii) Evaluate $\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{x y} d x d y$ using Simpson's one-third rule.
14. (a) (i) Obtain y by Taylor series method, given that $y^{\prime}=x y+1, y(0)=1$, for $x=0.1$ and 0.2 correct to four decimal places.
(ii) Use Milne's method to find $y(0.8)$, given $y^{\prime}=\frac{1}{x+y}, y(0)=2$ $y(0.2)=2.0933, y(0.4)=2.1755, y(0.6)=2.2493$.

Or
(b) Using Runge-Kutta method of order four, find y when $x=1.2$ in steps of 0.1 given that $y^{\prime}=x^{2}+y^{2}$ and $y(1)=1.5$.
15. (a) By iteration method, solve the elliptic equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ over a square region of side 4 , satisfying the boundary conditions.
(i) $u(0, y)=0,0 \leq y \leq 4$
(ii) $u(4, y)=12+y, 0 \leq y \leq 4$
(iii) $u(x, 0)=3 x, 0 \leq x \leq 4$
(iv) $u(x, 4)=x^{2}, 0 \leq x \leq 4$.

By dividing the square into 16 square meshes of side 1 and always correcting the computed values to two places to decimals, obtain the values of u at 9 interior pivotal points.

Or
(b) Solve by Crank-Nicolson's method $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for $0<x<1, t>0$ given that $u(0, t)=0, u(1, t)=0$ and $u(x, 0)=100 x(1-x)$. Compute u for one time step with $h=\frac{1}{4}$ and $K=\frac{1}{64}$.

