\square

Question Paper Code : 31526

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Sixth Semester
Computer Science and Engineering

MA 2264/MA 41/MA 51/080280026/10177 MA•401/10144 CSE 21/10144 ECE 15 NUMERICAL METHODS
(Common to Sixth Semester-Electronics and Communication Engineering and Information Technology Fifth Semester - Polymer Technology, Chemical Engineering and Polymer Technology Fourth Semester - Aeronautical Engineering,

Civil Engineering, Electrical and Electronics Engineering and Mechatronics Engineering)
(Also common to Fourth Semester MA 1251 - Numerical Methods for Civil Engineering, Aeronautical Engineering and Electrical and Electronics Engineering)
(Regulation 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. What do you mean by the order of convergence of an iterative method for finding the root of the equation $f(x)=0$?
2. Solve the equations $x+2 y=1$ and $3 x-2 y=7$ by Gauss-Elimination method.
3. State Newton's forward difference formula for equal intervals.
4. Find the divided differences of $f(x)=x^{3}-x^{2}+3 x+8$ for the arguments $0,1,4,5$.
5. Evaluate $\int_{-2}^{2} e^{\frac{-x}{2}} d x$ by Gauss two point formula.
6. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Trapezoidal rule.
7. State Adam's Predictor-Corrector formula.
8. Using Euler's method find the solution of the initial value problem $y^{\prime}=y-x^{2}+1, y(0)=0.5$ at $x=0.2$ taking $h=0.2$.
9. Write the diagonal five point formula for solving the two dimensional Laplace equation $\nabla^{2} u=0$.
10. Using finite difference solve $y^{\prime \prime}-y=0$ given $y(0)=0, y(1)=1, n=2$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Solve the equations by Gauss-Seidel method of iteration.

$$
\begin{equation*}
10 x+2 y+z=9, x+10 y-z=-22,-2 x+3 y+10 z=22 \tag{8}
\end{equation*}
$$

(ii) Determine the largest eigen value and the corresponding eigen vector of the matrix $\left(\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right)$ with $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ as the initial vector by power method.

Or

(b) (i) Find the inverse of the matrix $\left(\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right)$ using Gauss-Jordan method.
(ii) Using Newton's method, find the real root of $x \log _{10} x=1.2$ correct to five decimal places.
12. (a) Find the natural cubic spline to fit the data:

$$
\begin{array}{lccc}
x: & 0 & 1 & 2 \\
f(x): & -1 & 3 & 29
\end{array}
$$

Hence find $f(0.5)$ and $f(1.5)$.

$$
\begin{equation*}
\mathrm{Or} \tag{16}
\end{equation*}
$$

(b) (i) The following table gives the values of density of saturated water for various temperatures of saturated steam.

Temperature ${ }^{\circ} \mathrm{C}: \quad \begin{array}{lllll}100 & 150 & 200 & 250 & 300\end{array}$
Density hg/m ${ }^{3}$: $\quad \begin{array}{llllll}958 & 917 & 865 & 799 & 712\end{array}$
Find by interpolation, the density when the temperature is 275°.
(ii) Use Lagrange's formula to find the value of y at $x=6$ from the following data :

$$
\begin{array}{ccccc}
x: & 3 & 7 & 9 & 10 \tag{8}\\
y: & 168 & 120 & 72 & 63
\end{array}
$$

13. (a) (i) Apply three point Gaussian quadrature formula to evaluate $\int_{0}^{1} \frac{\sin x}{x} d x$.
(ii) Find the first and second order derivatives of $f(x)$ at $x=1.5$ for the following data :
$\begin{array}{lllllll}x: & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0\end{array}$
$f(x): \begin{array}{llllll}3.375 & 7.000 & 13.625 & 24.000 & 38.875 & 59.000\end{array}$
Or
(b) (i) The velocities of a car running on a straight road at intervals of 2 minutes are given below :
$\begin{array}{llllllll}\text { Time (min) : } & 0 & 2 & 4 & 6 & 8 & 10 & 12\end{array}$
$\begin{array}{llllllll}\text { Velocity }(\mathrm{km} / \mathrm{hr}): & 0 & 22 & 30 & 27 & 18 & 7 & 0\end{array}$
Using Simpson's $\frac{1}{3}$-rd rule find the distance covered by the car.
(ii) Evaluate $\int_{2}^{2.4} \int_{4}^{4.4} x y d x d y$ by Trapezoidal rule taking $h=k=0.1$.
14. (a) (i) Obtain y by Taylor series method, given that $y^{\prime}=x y+1, y(0)=1$, for $x=0.1$ and 0.2 correct to four decimal places.
(ii) Use Milne's method to find $y(0.8)$, given $y^{\prime}=\frac{1}{x+y}, y(0)=2$ $y(0.2)=2.0933, y(0.4)=2.1755, y(0.6)=2.2493$.

Or
(b) Using Runge-Kutta method of order four, find y when $x=1.2$ in steps of 0.1 given that $y^{\prime}=x^{2}+y^{2}$ and $y(1)=1.5$.
15. (a) By iteration method solve the elliptic equation $u_{x x}+u_{y y}=0$ over the square region of side 4 , satisfying the boundary conditions.
(i) $u(0, y)=0,0 \leq y \leq 4$
(ii) $u(4, y)=8+2 y, 0 \leq y \leq 4$
(iii) $u(x, 0)=\frac{x^{2}}{2}, 0 \leq x \leq 4$
(iv) $u(x, 4)=x^{2}, 0 \leq x \leq 4$

Compute the values at the interior points correct to one decimal with $h=k=1$.

Or

(b) (i) Using Crank-Nicolson's scheme, solve $16 \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0$ subject to $u(x, 0)=0, u(0, t)=0, u(1, t)=100 t$. Compute u for one step in t direction taking $h=\frac{1}{4}$.
(ii) Solve $u_{t t_{*}}=u_{x x}, \quad 0<x<2, t>0$ subject to $u(x, 0)=0$, $u_{t}(x, 0)=100\left(2 x-x^{2}\right), u(0, t)=0, u(2, t)=0$, choosing $h=\frac{1}{2}$ compute u for four time steps.

